ﻻ يوجد ملخص باللغة العربية
The ${cal O}(alpha_s^2)$ coefficient of the energy-energy correlation function (EEC) has been calculated by four groups with differing results. This discrepancy has lead to some confusion over how to measure the strong coupling constant using the EEC and the asymmetry of the energy-energy correlation function (AEEC) in electron-positron annihilation at the $Z$ resonance. For example, SLD average the four values of $alpha_s$ extracted from each of the different calculations. To resolve this situation, we present a new calculation of this coefficient using three separate numerical techniques to cancel the infrared poles. All three methods agree with each other and confirm the results of Kunszt and Nason that form the benchmark for other ${cal O}(alpha_s^2)$ quantities. As a consequence, the central values and theoretical errors of the strong coupling constant derived by SLD from the EEC and AEEC are altered. Using the SLD data, we find, $alpha_s^{EEC}(M_Z^2) = 0.125^{+0.002}_{-0.003}~({rm exp.}) pm 0.012 ~({rm theory})$ and $alpha_s^{AEEC}(M_Z^2) = 0.114pm 0.005~({rm exp.}) pm 0.004 ~({rm theory})$.
We derive an operator based factorization theorem for the energy-energy correlation (EEC) observable in the back-to-back region, allowing the cross section to be written as a convolution of hard, jet and soft functions. We prove the equivalence of th
The energy-energy correlation (EEC) between two detectors in $e^+e^-$ annihilation was computed analytically at leading order in QCD almost 40 years ago, and numerically at next-to-leading order (NLO) starting in the 1980s. We present the first analy
We present the first fully analytic calculation of the Quantum Chromodynamics (QCD) event shape observable Energy-Energy Correlation in electron-positron annihilation at Next-To-Leading Order (NLO). This result sheds light on the analytic structure o
In this work we complete the investigation of the recently introduced energy-energy correlation (EEC) function in hadronic Higgs decays at next-to-leading order (NLO) in fixed-order perturbation theory in the limit of vanishing light quark masses. Th
We investigate the possibility of constraining coupled dark energy (cDE) cosmologies using the three-point correlation function (3PCF). Making use of the CoDECS N-body simulations, we study the statistical properties of cold dark matter (CDM) haloes