ﻻ يوجد ملخص باللغة العربية
In a certain type of Calabi-Yau superstring models it is clarified that the symmetry breaking occurs by stages at two large intermediate energy scales and that two large intermediate scales induce large Majorana-masses of right-handed neutrinos. Peculiar structure of the effective nonrenormalizable interactions is crucial in the models. In this scheme Majorana-masses possibly amount to $O(10^{9 sim 10}gev)$ and see-saw mechanism is at work for neutrinos. Based on this scheme we propose a viable model which explains the smallness of masses for three kind of neutrinos $ u _e, u _{mu} {rm and} u _{tau}$. Special forms of the nonrenormalizable interactions can be understood as a consequence of an appropriate discrete symmetry of the compactified manifold.
The seesaw mechanism for the small neutrino mass has been a popular paradigm, yet it has been believed that there is no way to test it experimentally. We present a conceivable outcome from future experiments that would convince us of the seesaw mecha
The problem of estimating the effect of missing higher orders in perturbation theory is analyzed with emphasis in the application to Higgs production in gluon-gluon fusion. Well-known mathematical methods for an approximated completion of the perturb
In this paper, we consider the problem of learning models with a latent factor structure. The focus is to find what is possible and what is impossible if the usual strong factor condition is not imposed. We study the minimax rate and adaptivity issue
Recent work has presented intriguing results examining the knowledge contained in language models (LM) by having the LM fill in the blanks of prompts such as Obama is a _ by profession. These prompts are usually manually created, and quite possibly s
We study the geometry of the scalar manifolds emerging in the no-scale sector of Kahler moduli and matter fields in generic Calabi-Yau string compactifications, and describe its implications on scalar masses. We consider both heterotic and orientifol