ﻻ يوجد ملخص باللغة العربية
The asymmetries ${cal A}_k equiv [Gamma(twddec) -Gamma(tbwddec)] /[Gamma(twddec) + Gamma(tbwddec)]$ in the partial widths of the top quark decays are discussed within the Standard Model (SM), the Two-Higgs-Doublet Model (2HDM) and supersymmetric extensions of the SM (SSM). The leading contributions to these asymmetries in the SM and in the 2HDM are induced by the up-type quark self-energy diagrams and are found to be very small. However, in the SSM, the asymmetry ${cal A}_b$ can be substantial, ${cal O}(alpha_{QCD})$, provided the CP-violating phase of gluino-top-stop couplings is not suppressed. Within the SSM ${cal A}_b$ is generated by the vertex corrections.
We point out that QCD coherence effects can help to identify the colour structure of possible new physics contributions to the anomalously large forward-backward asymmetry in top quark pair production. New physics models that yield the same inclusive
At the LHC, top quark pairs are dominantly produced from gluons, making it difficult to measure the top quark forward-backward asymmetry. To improve the asymmetry measurement, we study variables that can distinguish between top quarks produced from q
The leading-order accurate description of top quark pair production, as usually employed in standard Monte Carlo event generators, gives no rise to the generation of a forward--backward asymmetry. Yet, non-negligible -- differential as well as inclus
We calculate the forward backward asymmetry of the top-pair production at TEVATRON up to next to leading order (NLO) in the little Higgs model (LHM). We find that the contribution of $Z_H$ can be large enough to make up the gap between standard model
We present an improved determination of the up- and down-quark distributions in the proton using recent data on charged lepton asymmetries from $W^pm$ gauge-boson production at the LHC and Tevatron. The analysis is performed in the framework of a glo