ﻻ يوجد ملخص باللغة العربية
We review in this paper the research status on testing the completeness of Quantum mechanics in High Energy Physics, especially on the Bell Inequalities. We briefly introduce the basic idea of Einstein, Podolsky, and Rosen paradox and the results obtained in photon experiments. In the tests of Bell inequalities in high energy physics, the early attempts of using spin correlations in particle decays and later on the mixing of neutral mesons used to form the quasi-spin entangled states are covered. The related experimental results in K^0 and B^0 systems are presented and discussed. We introduce the new scheme, which is based on the non-maximally entangled state and proposed to implement in phi factory, in testing the Local Hidden Variable Theory. And, we also discuss the possibility in generalizing it to the tau charm factory.
Besides using the laser beam, it is very tempting to directly testify the Bell inequality at high energy experiments where the spin correlation is exactly what the original Bell inequality investigates. In this work, we follow the proposal raised in
In Phys. Rev. A 101 (2020) 022117 it was argued that Bell inequalities are based on classical, not quantum, physics, and hence their violation in experiments provides no support for the claimed existence of peculiar nonlocal and superluminal influenc
We present the results of two tests where a sample of human participants were asked to make judgements about the conceptual combinations {it The Animal Acts} and {it The Animal eats the Food}. Both tests significantly violate the Clauser-Horne-Shimon
Bell inequalities are important tools in contrasting classical and quantum behaviors. To date, most Bell inequalities are linear combinations of statistical correlations between remote parties. Nevertheless, finding the classical and quantum mechanic
We introduce Bell inequalities based on covariance, one of the most common measures of correlation. Explicit examples are discussed, and violations in quantum theory are demonstrated. A crucial feature of these covariance Bell inequalities is their n