ترغب بنشر مسار تعليمي؟ اضغط هنا

Properties of lightest mesons at finite temperature and quark/baryon chemical potential in instanton model of QCD vacuum

56   0   0.0 ( 0 )
 نشر من قبل Serguei Molodtsov
 تاريخ النشر 2007
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The thermal and quark/baryon chemical potential dependences of quark condensate and masses of $pi$- and $sigma$-mesons are studied in the instanton model of the QCD vacuum in precritical region. The impact of phonon-like excitations of instanton liquid on the characteristics of $sigma$-meson in such an environment is also examined.

قيم البحث

اقرأ أيضاً

We investigate the QCD magnetic susceptibility chi at the finite quark-chemical potential (mu>0) and at zero temperature (T=0) to explore the pattern of the magnetic phase transition of the QCD vacuum. For this purpose, we employ the nonlocal chiral quark model derived from the instanton vacuum in the presence of the chemical potential in the chiral limit. Focusing on the Nambu-Goldstone phase, we find that the magnetic susceptibility remains almost stable to mu~200 MeV, and falls down drastically until the the quark-chemical potential reaches the critical point mu_c~320 MeV. Then, the strength of the chi is reduced to be about a half of that at mu=0, and the first-order magnetic phase transition takes place, corresponding to the chiral restoration. From these observations, we conclude that the response of the QCD vacuum becomes weak and unstable to the external electromagnetic field near the critical point, in comparison to that for vacuum. It is also shown that the breakdown of Lorentz invariance for the magnetic susceptibility, caused by the finite chemical potential, turns out to be small.
We compute the masses of the pseudoscalar mesons $pi^+$ , $K^0$ and $D^+$ at finite temperature and baryon chemical potential. The computations are based on a symmetry- preserving Dyson-Schwinger equation treatment of a vector-vector four quark conta ct interaction. The results found for the temperature dependence of the meson masses are in qualitative agreement with lattice QCD data and QCD sum rules calculations. The chemical potential dependence of the masses provide a novel prediction of the present computation.
197 - G. Endrodi , Z. Fodor , S. D. Katz 2018
We study the density of states method as well as reweighting to explore the low temperature phase diagram of QCD at finite baryon chemical potential. We use four flavors of staggered quarks, a tree-level Symanzik improved gauge action and four stout smearing steps on lattices with $N_s=4,6,8$ and $N_t=6 - 16$. We compare our results to that of the phase quenched ensemble and also determine the pion and nucleon masses. In the density of states approach we applied pion condensate or gauge action density fixing. We found that the density of states method performs similarly to reweighting. At $T approx 100$ MeV, we found an indication of the onset of the quark number density at around $mu/m_N sim 0.16 - 0.18$ on $6^4$ lattices at $beta=2.9$.
67 - F. Csikor , G.I. Egri , Z. Fodor 2004
We present an N_t=4 lattice study for the equation of state of 2+1 flavour staggered, dynamical QCD at finite temperature and chemical potential. We use the overlap improving multi-parameter reweighting technique to extend the equation of state for n on-vanishing chemical potentials. The results are obtained on the line of constant physics and our physical parameters extend in temperature and baryon chemical potential upto approx 500-600 MeV.
We investigate the properties of QCD at finite isospin chemical potential at zero and non-zero temperatures. This theory is not affected by the sign problem and can be simulated using Monte-Carlo techniques. With increasing isospin chemical potential and temperatures below the deconfinement transition the system changes into a phase where charged pions condense, accompanied by an accumulation of low modes of the Dirac operator. The simulations are enabled by the introduction of a pionic source into the action, acting as an infrared regulator for the theory, and physical results are obtained by removing the regulator via an extrapolation. We present an update of our study concerning the associated phase diagram using 2+1 flavours of staggered fermions with physical quark masses and the comparison to Taylor expansion. We also present first results for our determination of the equation of state at finite isospin chemical potential and give an example for a cosmological application. The results can also be used to gain information about QCD at small baryon chemical potentials using reweighting with respect to the pionic source parameter and the chemical potential and we present first steps in this direction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا