ترغب بنشر مسار تعليمي؟ اضغط هنا

On Symmetric Lepton Mixing Matrices

55   0   0.0 ( 0 )
 نشر من قبل Werner Rodejohann
 تاريخ النشر 2006
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Contrary to the quark mixing matrix, the lepton mixing matrix could be symmetric. We study the phenomenological consequences of this possibility. In particular, we find that symmetry would imply that |U_{e3}| is larger than 0.16, i.e., above its current 2 sigma limit. The other mixing angles are also constrained and CP violating effects in neutrino oscillations are suppressed, even though |U_{e3}| is sizable. Maximal atmospheric mixing is only allowed if the other observables are outside their current 3 sigma ranges, and sin^2 theta_{23} lies typically below 0.5. The Majorana phases are not affected, but the implied values of the solar neutrino mixing angle have some effect on the predictions for neutrinoless double beta decay. We further discuss some formal properties of a symmetric mixing matrix.

قيم البحث

اقرأ أيضاً

Assuming that neutrinos are Majorana particles, we perform a complete classification of all possible mixing matrices which are fully determined by residual symmetries in the charged-lepton and neutrino mass matrices. The classification is based on th e assumption that the residual symmetries originate from a finite flavour symmetry group. The mathematical tools which allow us to accomplish this classification are theorems on sums of roots of unity. We find 17 sporadic cases plus one infinite series of mixing matrices associated with three-flavour mixing, all of which have already been discussed in the literature. Only the infinite series contains mixing matrices which are compatible with the data at the 3 sigma level.
We propose a model that all quark and lepton mass matrices have the same zero texture. Namely their (1,1), (1,3) and (3,1) components are zeros. The mass matrices are classified into two types I and II. Type I is consistent with the experimental data in quark sector. For lepton sector, if seesaw mechanism is not used, Type II allows a large $ u_mu - u_tau$ mixing angle. However, severe compatibility with all neutrino oscillation experiments forces us to use the seesaw mechanism. If we adopt the seesaw mechanism, it turns out that Type I instead of II can be consistent with experimental data in the lepton sector too.
We construct a class of renormalizable models for lepton mixing that generate predictions given in terms of the charged-lepton mass ratios. We show that one of those models leads, when one takes into account the known experimental values, to almost m aximal CP-breaking phases and to almost maximal neutrinoless double-beta decay. We study in detail the scalar potential of the models, especially the bounds imposed by unitarity on the values of the quartic couplings.
We consider the possibility of texture zeros in lepton mass matrices of the minimal left-right symmetric model (LRSM) where light neutrino mass arises from a combination of type I and type II seesaw mechanisms. Based on the allowed texture zeros in l ight neutrino mass matrix from neutrino and cosmology data, we make a list of all possible allowed and disallowed texture zeros in Dirac and heavy neutrino mass matrices which appear in type I and type II seesaw terms of LRSM. For the numerical analysis we consider those cases with maximum possible texture zeros in light neutrino mass matrix $M_{ u}$, Dirac neutrino mass matrix $M_D$, heavy neutrino mass matrix $M_{RR}$ while keeping the determinant of $M_{RR}$ non-vanishing, in order to use the standard type I seesaw formula. The possibility of maximum zeros reduces the free parameters of the model making it more predictive. We then compute the new physics contributions to rare decay processes like neutrinoless double beta decay, charged lepton flavour violation. We find that even for a conservative lower limit on a left-right symmetry scale corresponding to heavy charged gauge boson mass 4.5 TeV, in agreement with collider bounds, for right-handed neutrino masses above 1 GeV, the new physics contributions to these rare decay processes can saturate the corresponding experimental bound.
137 - W. Grimus , L. Lavoura 2008
We consider trimaximal lepton mixing, defined by |U_{alpha 2}|^2 = 1/3 for all alpha = e, mu, tau. This corresponds to a two-parameter lepton mixing matrix U. We present a model for the lepton sector in which trimaximal mixing is enforced by softly b roken discrete symmetries; one version of the model is based on the group Delta(27). A salient feature of our model is that no vacuum alignment is required.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا