ﻻ يوجد ملخص باللغة العربية
Using the soft-pion theorem and the assumption on the final-state interactions, we include the contribution of $DK$ continuum into the QCD sum rules for $D_{sJ}(2317)$ meson. We find that this contribution can significantly lower the mass and the decay constant of $D_s(0^+)$ state. For the value of the current quark mass $m_c(m_c)=1.286 {rm GeV}$, we obtain the mass of $D_s(0^+)$ $M=2.33 pm 0.02 {rm GeV}$ in the interval $s_0=7.5-8.0 {rm GeV}^2$, being in agreement with the experimental data, and the vector current decay constant of $D_s(0^+)$ $f_0=0.128 pm 0.013 {rm GeV}$, much lower than those obtained in previous literature.
Production of $D_{sJ}$(2317) mesons in relativistic heavy ion collisions at RHIC is studied. Using the quark coalescence model, we first determine the initial number of $D_{sJ}$(2317) mesons produced during hadronization of created quark-gluon plasma
We derive a new QCD sum rule for $D(0^+)$ which has only the $Dpi$ continuum with a resonance in the hadron side, using the assumption similar to that has been successfully used in our previous work to the mass of $D_s(0^+)(2317)$. For the value of t
Using three point QCD sum rules method, the form factors relevant to the semileptonic $B_{s}to D_{sJ}(2460)ell u$ decay are calculated. The $q^2$ dependencies of these form factors are evaluated. The dependence of the asymmetry parameter $alpha$, c
We analyze various possible interpretations of the narrow state $D_{sJ}(2632)$ which lies 100 MeV above threshold. This interesting state decays mainly into $D_s eta$ instead of $D^0 K^+$. If this relative branching ratio is further confirmed by othe
We have studied the charmonium and bottomonium hybrid states with various $J^{PC}$ quantum numbers in QCD sum rules. At leading order in $alpha_s$, the two-point correlation functions have been calculated up to dimension six including the tri-gluon c