ﻻ يوجد ملخص باللغة العربية
We propose CP asymmetries based on triple product correlations in the decays sbottom_m -> top chargino_j with subsequent decays of top and chargino_j. For the subsequent chargino_j decay into a leptonic final state l^- u neutralino_1 we consider the three possible decay chains chargino_j -> l^- sneutrino -> l^- u neutralino_1, chargino_j -> slepton_n u -> l^- u neutralino_1 and chargino_j -> W^- neutralino_1 -> l^- u neutralino_1. We consider two classes of CP asymmetries. In the first class it must be possible to distinguish between different leptonic chargino_j decay chains, whereas in the second class this is not necessary. We consider also the 2-body decay chargino_j -> W^- neutralino_1, and we assume that the momentum of the W boson can be measured. Our framework is the minimal supersymmetric standard model with complex parameters. The proposed CP asymmetries are non-vanishing due to non-zero phases for the parameters mu and/or A_b. We present numerical results and estimate the observability of these CP asymmetries.
We report final measurements of direct $mathit{CP}$--violating asymmetries in charmless decays of neutral bottom hadrons to pairs of charged hadrons with the upgraded Collider Detector at the Fermilab Tevatron. Using the complete $sqrt{s}=1.96$ TeV p
The CP violating asymmetries for Cabibbo suppressed charged D meson decays in the standard model are estimated in the factorized approximation, using the two-loop effective hamiltonian and a model for final state interactions previously tested for Ca
U-spin symmetry predicts equal CP rate asymmetries with opposite signs in pairs of $Delta S=0$ and $Delta S=1$ $B$ meson decays in which initial and final states are related by U-spin reflection. Of particular interest are six decay modes to final st
The reactions $Sigma_b^* to Lambda_b pi$, $Sigma_b to Lambda_b pi$, and $Xi_b^* to Xi_b pi$ are studied in the $^3P_0$ non-relativistic quark model with all the model parameters fixed in the sector of light quarks. The theoretical predictions for the
We study the angular distribution of the charged lepton in the top-quark decay into a bottom quark and a W boson which subsequently decays into ell u_{ell}, when a hard gluon is radiated off. The absorptive part of the t to bWg decay amplitudes, whic