ترغب بنشر مسار تعليمي؟ اضغط هنا

Thermodynamics of AdS/QCD

53   0   0.0 ( 0 )
 نشر من قبل Jung-Tay Yee
 تاريخ النشر 2006
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study finite temperature properties of four dimensional QCD-like gauge theories in the gauge theory/gravity duality picture. The gravity dual contains two deformed 5d AdS metrics, with and without a black hole, and a dilaton. We study the thermodynamics of the 4d boundary theory and constrain the two metrics so that they correspond to a high and a low temperature phase separated by a first order phase transition. The equation of state has the standard form for the pressure of a strongly coupled fluid modified by a vacuum energy, a bag constant. We determine the parameters of the deformation by using QCD results for $T_c$ and the hadron spectrum. With these parameters, we show that the phase transition in the 4d boundary theory and the 5d bulk Hawking-Page transition agree. We probe the dynamics of the two phases by computing the quark-antiquark free energy in them and confirm that the transition corresponds to confinement-deconfinement transition.



قيم البحث

اقرأ أيضاً

We study strange and isospin asymmetric matter in a bottom-up AdS/QCD model. We first consider isospin matter, which has served as a good testing ground for nonperturbative QCD. We calculate the isospin chemical potential dependence of hadronic obser vables such as the masses and the decay constants of the pseudo-scalar, vector, and axial-vector mesons. We discuss a possibility of the charged pion condensation in the matter within the bottom-up AdS/QCD model. Then, we study the properties of the hadronic observables in strange matter. We calculate the deconfinement temperature in strange and isospin asymmetric matter. One of the interesting results of our study is that the critical temperature at a fixed baryon number density increases when the strangeness chemical potential is introduced. This suggests that if matter undergoes a first-order transition to strange matter, the critical temperature shows a sudden jump at the transition point.
We study the physics with finite nuclear density in the framework of AdS/QCD with holographic baryon field included. Based on a mean field type approach, we introduce the nucleon density as a bi-fermion condensate of the lowest mode of the baryon fie ld and calculate the density dependence of the chiral condensate and the nucleon mass. We observe that the chiral condensate as well as the mass of nucleon decrease with increasing nuclear density. We also consider the mass splitting of charged vector mesons in iso-spin asymmetric nuclear matter.
114 - R. da Rocha 2021
The mass spectra of isovector $Upsilon$, $psi$, $phi$, and $omega$ meson resonances are investigated, in the AdS/QCD and information entropy setups. The differential configurational entropy is employed to obtain the mass spectra of radial $S$-wave re sonances, with higher excitation levels, in each one of these meson families, whose respective first undisclosed states are discussed and matched up to candidates in the Particle Data Group.
Starting from the Hamiltonian equation of motion in QCD we find a single variable light-front equation for QCD which determines the eigenspectrum and the light-front wavefunctions of hadrons for general spin and orbital angular momentum. This light-f ront wave equation is equivalent to the equations of motion which describe the propagation of spin-$J$ modes on anti-de Sitter (AdS) space.
Since the incident nuclei in heavy-ion collisions do not carry strangeness, the global net strangeness of the detected hadrons has to vanish. We investigate the impact of strangeness neutrality on the phase structure and thermodynamics of QCD at fini te baryon and strangeness chemical potential. To this end, we study the low-energy sector of QCD within a Polyakov loop enhanced quark-meson effective theory with 2+1 dynamical quark flavors. Non-perturbative quantum, thermal, and density fluctuations are taken into account with the functional renormalization group. We show that the impact of strangeness neutrality on thermodynamic quantities such as the equation of state is sizable.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا