ﻻ يوجد ملخص باللغة العربية
We consider meson-baryon interactions in S-wave with strangeness -1. This is a sector populated by plenty of resonances interacting in several two-body coupled channels. We consider a large set of experimental data, where the recent experiments are remarkably accurate. This requires a sound theoretical description to account for all the data and we employ Unitary Chiral Perturbation Theory up to and including O(p^2). The spectroscopy of our solutions is studied within this approach, discussing the rise from the pole content of two Lambda(1405) resonances and of the Lambda(1670), Lambda(1800), Sigma(1480), Sigma(1620) and Sigma(1750). We finally argue about our preferred fit.
We consider meson-baryon interactions in S-wave with strangeness -1. This is a non-perturbative sector populated by plenty of resonances interacting in several two-body coupled channels.We study this sector combining a large set of experimental data.
We derive a simple relation between strangeness neutrality and baryon-strangeness correlations. In heavy-ion collisions, the former is a consequence of quark number conservation of the strong interactions while the latter are sensitive probes of the
In this work we extend our formalism to study meson-baryon interactions by including $s$- and $u$-channel diagrams for pseudoscalar-baryon systems. We study the coupled systems with strangeness $-1$ and focus on studying the isospin-1 resonance(s), e
Integral equations for meson-baryon scattering amplitudes are obtained by utilizing time-ordered perturbation theory for a manifestly Lorentz-invariant formulation of baryon chiral perturbation theory. Effective potentials are defined as sums of two-
The meson-baryon interactions in s-wave in the strangeness S=-1 sector are studied using a chiral unitarity approach based on the next-to-leading order chiral SU(3) Lagrangian. The model is fitted to the large set of experimental data in different tw