ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-Perturbative Study of the Light Pseudoscalar Masses in Chiral Dynamics

159   0   0.0 ( 0 )
 نشر من قبل Jose Antonio Oller
 تاريخ النشر 2006
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We perform a non-perturbative chiral study of the masses of the lightest pseudoscalar mesons. In the calculation of the self-energies we employ the S-wave meson-meson amplitudes taken from Unitary Chiral Perturbation Theory (UCHPT) that include the lightest nonet of scalar resonances. Values for the bare masses of pions and kaons are obtained, as well as an estimate of the mass of the eta_8. The former are found to dominate the physical pseudoscalar masses. We then match to the self-energies from Chiral Perturbation Theory (CHPT) to O(p^4), and a robust relation between several O(p^4) CHPT counterterms is obtained. We also resum higher orders from our calculated self-energies. By taking into account values determined from previous chiral phenomenological studies of m_s/hat{m} and 3L_7+L^r_8, we determine a tighter region of favoured values for the O(p^4) CHPT counterterms 2L^r_6-L^r_4 and 2L^r_8-L^r_5. This determination perfectly overlaps with the recent determinations to O(p^6) in CHPT. We warn about a likely reduction in the value of m_s/hat{m} by higher loop diagrams and that this is not systematically accounted for by present lattice extrapolations. We also provide a favoured interval of values for m_s/hat{m} and 3L_7+L^r_8.

قيم البحث

اقرأ أيضاً

The thesis contains studies of properties quark-gluon plasma, using some non-perturbative techniques. It contains a brief introduction of quark-gluon plasma (QGP) and discussion on various signatures along with a motivation for this thesis work. It p resents the basic mathematical tools and ingredients required for the thesis, i.e. basics of QCD, Imaginary and Real Time Formalism, Hard Thermal Loop perturbation theory (HTLpt), Gribov-Zwanziger (GZ) action, the Correlation Function along with the Spectral Function and Operator Product Expansion (OPE) and QCD in magnetized medium. OPE is used to compute the dilepton rate in intermediate mass range by incorporating the non-perturbative dynamics of QCD through the inclusion of non-vanishing quark and gluon condensates in combination with the Green functions in momentum space. Also the magnetic scale (g^2T) in the HTL perturbation theory, related to the confining properties of the QCD is taken into account using the GZ action through a mass parameter, which reflects a new space-like quark mode in the collective excitation. The impact of this new exciting mode on the DPR has been studied and its important consequences has been discussed. A hot magnetized medium introduces another scale in the system in addition to temperature. Electromagnetic spectral properties and DPR are studied completely analytically in presence of both strong and weak background magnetic fields at finite temperature. The Debye screening in a hot and magnetized medium has been studied which reveals some of the intriguing properties of the medium in presence of both strong and weak magnetic field. Also an important quantity that characterizes the QGP, namely quark number susceptibility has been investigated. Most of the non-perturbative results discussed in this thesis are compared with those of perturbative ones and lattice QCD.
The breaking of chiral symmetry in holographic light-front QCD is encoded in its longitudinal dynamics with its chiral limit protected by the superconformal algebraic structure which governs its transverse dynamics. The scale in the longitudinal ligh t-front Hamiltonian determines the confinement strength in this direction: It is also responsible for most of the light meson ground state mass consistent with the Gell-Mann-Oakes-Renner constraint. Longitudinal confinement and the breaking of chiral symmetry are found to be different manifestations of the same underlying dynamics like in t Hooft large $N_C$ QCD(1 + 1) model.
We incorporate the effective restoration of $U(1)_{rm A}$ symmetry in the 2+1 flavor entanglement Polyakov-loop extended Nambu--Jona-Lasinio (EPNJL) model by introducing a temperature-dependent strength $K(T)$ to the Kobayashi-Maskawa-t Hooft (KMT) d eterminant interaction. $T$ dependence of $K(T)$ is well determined from pion and $a_0$-meson screening masses obtained by lattice QCD (LQCD) simulations with improved p4 staggered fermions. The strength is strongly suppressed in the vicinity of the pseudocritical temperature of chiral transition. The EPNJL model with the $K(T)$ well reproduces meson susceptibilities calculated by LQCD with domain-wall fermions. The model shows that the chiral transition is second order at the light-quark chiral-limit point where the light quark mass is zero and the strange quark mass is fixed at the physical value. This indicates that there exists a tricritical point. Hence the location is estimated.
In this talk we present a numerical lattice study of an SU(3) gauge model where an SU(2) doublet of non-Abelian strongly interacting fermions is coupled to a complex scalar field doublet via a Yukawa and a Wilson-like term. The model enjoys an exact symmetry, acting on all fields, which prevents UV power divergent fermion mass corrections, despite the presence of these two chiral breaking operators in the Lagrangian. In the phase where the scalar potential is non-degenerate and fermions are massless, the bare Yukawa coupling can be set at a critical value at which chiral fermion transformations become symmetries of the theory. Numerical simulations in the Nambu-Goldstone phase of the critical theory, for which the renormalized Yukawa coupling by construction vanishes, give evidence for non-perturbative generation of a UV finite fermion mass term in the effective action.
In this work, we investigate not only the pole masses but also the screening masses of neutral pions at finite temperature and magnetic field by utilizing the random phase approximation (RPA) approach in the framework of the two-flavor Nambu--Jona-La sinio (NJL) model. And two equivalent formalisms in the presence of a magnetic field, i.e. the Landau level representation (LLR) and the proper-time representation (PTR), are applied to obtain the corresponding analytical expressions of the polarization functions (except the expressions for the pole masses in the PTR). In order to evaluate the applicable region of the low-momentum expansion (LME), we compare the numerical results within the full RPA (FRPA) with those within the reduced RPA (RRPA), i.e. the RPA in the LME. It is confirmed that the pole masses of {pi}0in the FRPA suffer a sudden mass jump at the Mott transition temperature when in the presence of external magnetic field, and the Mott transition temperature is catalyzed by the magnetic field. And by analyzing the behaviors of the directional sound velocities of {pi}0, which are associated with the breaking of the Lorentz invariance by the heat bath and the magnetic field, we clarify the two problems existing in previous literatures: one is that the transverse sound velocities in the medium are always larger than unity and thus violate the law of causality on account of the non-covariant regularization scheme, the other is that the longitudinal sound velocities are identically equal unity at finite temperature on account of the limitation of the derivative expansion method used.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا