ﻻ يوجد ملخص باللغة العربية
A general formalism for computing only the rational parts of oneloop QCD amplitudes is developed. Starting from the Feynman integral representation of the one-loop amplitude, we use tensor reduction and recursive relations to compute the rational parts directly. Explicit formulas for the rational parts are given for all bubble and triangle integrals. Formulas are also given for box integrals up to two-masshard boxes which are the needed ingredients to compute up to 6-gluon QCD amplitudes. We use this method to compute explicitly the rational parts of the 5- and 6-gluon QCD amplitudes in two accompanying papers.
The rational parts of 5-gluon one-loop amplitudes are computed by using the newly developed method for computing the rational parts directly from Feynman integrals. We found complete agreement with the previously well-known results of Bern, Dixon and
The rational parts of 6-gluon one-loop amplitudes with scalars circulating in the loop are computed by using the newly developed method for computing the rational parts directly from Feynman integrals. We present the analytic results for the two MHV
Recent progress in unitarity techniques for one-loop scattering amplitudes makes a numerical implementation of this method possible. We present a 4-dimensional unitarity method for calculating the cut-constructible part of amplitudes and implement th
In this talk we review the recent computation of the five- and six-gluon two-loop amplitudes in Yang-Mills theory using local integrands which make the infrared pole structure manifest. We make some remarks on the connection with BCJ relations and the all-multiplicity structure.
We study the factorisation properties of one-loop scattering amplitudes in the triple collinear limit and extract the universal splitting amplitudes for processes initiated by a gluon. The splitting amplitudes are derived from the analytic Higgs plus