ﻻ يوجد ملخص باللغة العربية
Radiative decays of polarized Lambda_b baryons represent an attractive possibility to measure the helicity of the photon emitted in the b --> s gamma quark transition and thus to subject the Standard Model to a stringent test at existing and future hadron colliders. The most abundant mode, Lambda(1116) gamma, is experimentally very challenging because of the long decay length of the Lambda(1116). We show that the experimentally more accessible Lambda_b --> p K gamma decays proceeding via Lambda resonances may be used to extract the photon helicity for sufficient Lambda_b polarization, if the resonance spin does not exceed 3/2. A direct comparison of the potential of such resonance decays to assess the photon polarization at a hadron collider with respect to the decay to Lambda(1116) is given.
The first observation of the decays $Lambda_b^0 to chi_{c1} p K^-$ and $Lambda_b^0 to chi_{c2} p K^-$ is reported using a data sample corresponding to an integrated luminosity of $3.0$ fb$^{-1}$, collected by the LHCb experiment in $pp$ collisions at
We give a general parameterization of the Lambda_b --> Lambda(1520) gamma decay amplitude, applicable to any strange isosinglet spin-3/2 baryon, and calculate the branching fraction and helicity amplitudes. Large-energy form factor relations are work
The data sample of $Lambda_b^0to J/psi p K^-$ decays acquired with the LHCb detector from 7 and 8~TeV $pp$ collisions, corresponding to an integrated luminosity of 3 fb$^{-1}$, is inspected for the presence of $J/psi p$ or $J/psi K^-$ contributions w
Observations of exotic structures in the $J/psi p$ channel, that we refer to as pentaquark-charmonium states, in $Lambda_b^0to J/psi K^- p$ decays are presented. The data sample corresponds to an integrated luminosity of 3/fb acquired with the LHCb d
We investigate a new method to probe the helicity of the photon emitted in the b -> s gamma transition. The method relies on the observation of interference effects between two resonance contributions, B -> K*(K gamma) gamma and B -> eta_c(gamma gamm