ﻻ يوجد ملخص باللغة العربية
Setting up the infrastructure to manage a software project can become a task as significant writing the software itself. A variety of useful open source tools are available, such as Web-based viewers for version control systems, wikis for collaborative discussions and bug-tracking systems, but their use in high-energy physics, outside large collaborations, is insubstantial. Understandably, physicists would rather do physics than configure project management tools. We introduce the CEDAR HepForge system, which provides a lightweight development environment for HEP software. Services available as part of HepForge include the above-mentioned tools as well as mailing lists, shell accounts, archiving of releases and low-maintenance Web space. HepForge also exists to promote best-practice software development methods and to provide a central repository for re-usable HEP software and phenomenology codes.
Long term sustainability of the high energy physics (HEP) research software ecosystem is essential for the field. With upgrades and new facilities coming online throughout the 2020s this will only become increasingly relevant throughout this decade.
Meta-software for data acquisition (DAQ) is a new approach to design the DAQ systems for experimental setups in experiments in high energy physics (HEP). It abstracts from experiment-specific data processing logic, but reflects it through configurati
Particle physics has an ambitious and broad experimental programme for the coming decades. This programme requires large investments in detector hardware, either to build new facilities and experiments, or to upgrade existing ones. Similarly, it requ
The Scalable Systems Laboratory (SSL), part of the IRIS-HEP Software Institute, provides Institute participants and HEP software developers generally with a means to transition their R&D from conceptual toys to testbeds to production-scale prototypes
Petabytes of data are to be processed and stored requiring millions of CPU-years in high energy particle (HEP) physics event simulation. This enormous demand is handled in worldwide distributed computing centers as part of the LHC computing grid. The