ترغب بنشر مسار تعليمي؟ اضغط هنا

Extra-Dimensions and Dark Matter

205   0   0.0 ( 0 )
 نشر من قبل Andrea Lionetto
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we study the general scenario of an effective theory coming from the compactification of a higher dimensional theory in a string inspired setting. This leads to gauge coupling unification at an intermediate mass scale. After having computed all the threshold corrections (due to Kaluza-Klein modes) to the running of the couplings of the MSSM we embark in a detailed phenomenological analysis of the model, based on the numerical package DarkSUSY, to find constraints on the scenario from Dark Matter data. The mass spectrum of the theory does not have tachyons. Moreover we find that the neutralino is still the LSP with a relic density compatible with the most recent experimental data. With respect to the standard mSUGRA scenario we find that the neutralino is higgsino like in most of the parameter space. Our modifications to the DarkSUSY package will be shortly available upon request.



قيم البحث

اقرأ أيضاً

234 - Peter T. Winslow 2010
We demonstrate a new model which uses an ADD type braneworld scenario to produce a multi-state theory of dark matter. Compactification of the extra dimensions onto a sphere leads to the association of a single complex scalar in the bulk with multiple Kaluza-Klein towers in an effective four-dimensional theory. A mutually interacting multi-state theory of dark matter arises naturally within which the dark matter states are identified with the lightest Kaluza-Klein particles of fixed magnetic quantum number. These states are protected from decay by a combination of a global U(1) symmetry and the continuous rotational symmetry about the polar axis of the spherical geometry. We briefly discuss the relic abundance calculation and investigate the spin-independent elastic scattering off nucleons of the lightest and next-to-lightest dark matter states.
We show that a discrete exchange symmetry can give rise to realistic dark matter candidates in models with warped extra dimensions. We show how to realize our construction in a variety of models with warped extra dimensions and study in detail a real istic model of Gauge-Higgs Unification/composite Higgs in which the observed amount of dark matter is naturally reproduced. In this model, a realistic pattern of electroweak symmetry breaking typically occurs in a region of parameter space in which the fit to the electroweak precision observables improves, the Higgs is heavier than the experimental bound and new light quark resonances are predicted. We also quantify the fine-tuning of such scenarios, and discuss in which sense Gauge-Higgs Unification models result in a natural theory of electroweak symmetry breaking.
172 - Andrea M. Lionetto 2005
We show some phenomenological implications for the dark matter problem of a class of models with deflected anomaly mediated supersymmetry breaking in the context of the MSSM. This scenario can be naturally embedded in a brane world model with one com pactified extra dimension. It turns out that in these models the neutralino is still the LSP and so a good candidate as cold dark matter. We found that the neutralino is quite a pure bino in almost all the parameter space. Moreover we computed the thermal relic density and we found wide cosmologically allowed regions for the neutralino.
Models of Universal Extra Dimensions (UED) at the TeV scale lead to the presence of Kaluza Klein (KK) excitations of the ordinary fermions and bosons of the Standard Model that may be observed at hadron and lepton colliders. A conserved discrete symm etry, KK-parity, ensures the stability of the lightest KK particle (LKP), which, if neutral, becomes a good dark matter particle. It has been recently shown that for a certain range of masses of the LKP a relic density consistent with the experimentally observed one may be obtained. These works, however, ignore the impact of KK graviton production at early times. Whether the G^1 is the LKP or not, the G^n tower thus produced can decay to the LKP, and depending on the reheating temperature, may lead to a modification of the relic density. In this article, we show that this effect may lead to a relevant modification of the range of KK masses consistent with the observed relic density. Additionally, if evidence for UED is observed experimentally, we find a stringent upper limit on the reheating temperature depending on the mass of the LKP observed.
Extra dimensions have proven to be a very useful tool in constructing new physics models. In earlier work, we began investigating toy models for the 5-D analog of the kinetic mixing/vector portal scenario where the interactions of dark matter, taken to be, e.g., a complex scalar, with the brane-localized fields of the Standard Model (SM) are mediated by a massive $U(1)_D$ dark photon living in the bulk. These models were shown to have many novel features differentiating them from their 4-D analogs and which, in several cases, avoided some well-known 4-D model building constraints. However, these gains were obtained at the cost of the introduction of a fair amount of model complexity, e.g., dark matter Kaluza-Klein excitations. In the present paper, we consider an alternative setup wherein the dark matter and the dark Higgs, responsible for $U(1)_D$ breaking, are both localized to the dark brane at the opposite end of the 5-D interval from where the SM fields are located with only the dark photon now being a 5-D field. The phenomenology of such a setup is explored for both flat and warped extra dimensions and compared to the previous more complex models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا