ترغب بنشر مسار تعليمي؟ اضغط هنا

Improved Limit on theta_{13} and Implications for Neutrino Masses in Neutrino-less Double Beta Decay and Cosmology

114   0   0.0 ( 0 )
 نشر من قبل Werner Rodejohann
 تاريخ النشر 2005
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze the impact of a measurement, or of an improved bound, on theta_{13} for the determination of the effective neutrino mass in neutrino-less double beta decay and cosmology. In particular, we discuss how an improved limit on (or a specific value of) theta_{13} can influence the determination of the neutrino mass spectrum via neutrino-less double beta decay. We also discuss the interplay with improved cosmological neutrino mass searches.



قيم البحث

اقرأ أيضاً

We analyze the effect of the Dark-large mixing angle (DLMA) solution on the effective Majorana mass ($m_{betabeta}$) governing neutrino-less double beta decay ($0 ubetabeta$) in the presence of a sterile neutrino. We consider the 3+1 picture, compris ing of one additional sterile neutrino. We have checked that the MSW resonance in the sun can take place in the DLMA parameter space in this scenario. Next we investigate how the values of the solar mixing angle $theta_{12}$ corresponding to the DLMA region alter the predictions of $m_{betabeta}$ including a sterile neutrino in the analysis. We also compare our results with three generation cases for both standard large mixing angle (LMA) and DLMA. Additionally, we evaluate the discovery sensitivity of the future ${}^{136}Xe$ experiments in this context.
285 - C. H. Jang , B. J. Kim , Y. J. Ko 2018
Recent neutrino experiment results show a preference for the normal neutrino mass ordering. The global efforts to search for neutrinoless double beta decays undergo a broad gap with the approach to the prediction in the three-neutrino framework based on the normal ordering. This research is intended to show that it is possible to find a neutrinoless double beta decay signal even with normal ordered neutrino masses. We propose the existence of a light sterile neutrino as a solution to the higher effective mass of the electron neutrino expected by the current experiments. A few short-baseline oscillation experiments gave rise to a limit on the mass of the sterile neutrino and its mixing with the lightest neutrino. We demonstrate that the results of neutrinoless double beta decays can also narrow down the range of the mass and the mixing angle of the light sterile neutrino.
152 - H.L. Ge , C. Giunti , Q.Y. Liu 2009
We present the results of a Bayesian analysis of solar and KamLAND neutrino data in the framework of three-neutrino mixing. We adopt two approaches for the prior probability distribution of the oscillation parameters Delta m^2_{21}, sin^2 theta_{12}, sin^2 theta_{13}: 1) a traditional flat uninformative prior; 2) an informative prior which describes the limits on sin^2 theta_{13} obtained in atmospheric and long-baseline accelerator and reactor neutrino experiments. In both approaches, we present the allowed regions in the sin^2 theta_{13} - Delta m^2_{21} and sin^2 theta_{12} - sin^2 theta_{13} planes, as well as the marginal posterior probability distribution of sin^2 theta_{13}. We confirm the 1.2 sigma hint of theta_{13} > 0 found in hep-ph/0806.2649 from the analysis of solar and KamLAND neutrino data. We found that the statistical significance of the hint is reduced to about 0.8 sigma by the constraints on sin^2 theta_{13} coming from atmospheric and long-baseline accelerator and reactor neutrino data, in agreement with arXiv:0808.2016.
Past and current direct neutrino mass experiments set limits on the so-called effective neutrino mass, which is an incoherent sum of neutrino masses and lepton mixing matrix elements. The electron energy spectrum which neglects the relativistic and n uclear recoil effects is often assumed. Alternative definitions of effective masses exist, and an exact relativistic spectrum is calculable. We quantitatively compare the validity of those different approximations as function of energy resolution and exposure in view of tritium beta decays in the KATRIN, Project 8 and PTOLEMY experiments. Furthermore, adopting the Bayesian approach, we present the posterior distributions of the effective neutrino mass by including current experimental information from neutrino oscillations, beta decay, neutrinoless double-beta decay and cosmological observations. Both linear and logarithmic priors for the smallest neutrino mass are assumed.
We perform a statistical analysis with the prospective results of future experiments on neutrino-less double beta decay, direct searches for neutrino mass (KATRIN) and cosmological observations. Realistic errors are used and the nuclear matrix elemen t uncertainty for neutrino-less double beta decay is also taken into account. Three benchmark scenarios are introduced, corresponding to quasi-degenerate, inverse hierarchical neutrinos, and an intermediate case. We investigate to what extend these scenarios can be reconstructed. Furthermore, we check the compatibility of the scenarios with the claimed evidence of neutrino-less double beta decay.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا