ﻻ يوجد ملخص باللغة العربية
We present twin Higgs models based on the extension of the Standard Model to left-right symmetry that protect the weak scale against radiative corrections up to scales of order 5 TeV. In the ultra-violet the Higgs sector of these theories respects an approximate global symmetry, in addition to the discrete parity symmetry characteristic of left-right symmetric models. The Standard Model Higgs field emerges as the pseudo-Goldstone boson associated with the breaking of the global symmetry. The parity symmetry tightly constrains the form of radiative corrections to the Higgs potential, allowing natural electroweak breaking. The minimal model predicts a rich spectrum of exotic particles that will be accessible to upcoming experiments, and which are necessary for the cancellation of one-loop quadratic divergences. These include right-handed gauge bosons with masses not to exceed a few TeV and a pair of vector-like quarks with masses of order several hundred GeV.
The left-right twin Higgs model predicts one neutral Higgs boson $phi_{0}$ and it acquires mass $m_{phi_{0}}sim mu_{r}$ with the $mu$ term, which can be lighter than half the SM-like Higgs boson mass in a portion of parameter space. Thus, the SM-like
We develop a minimal left-right symmetric model based on the gauge group $SU(3)_C otimes SU(2)_L otimes SU(2)_R otimes U(1)_{B-L}$ wherein the Higgs triplets conventionally employed for symmetry breaking are replaced by Higgs doublets. Majorana masse
Left-Right twin Higgs(LRTH) model predicts the existence of a pair of charged Higgs $phi^{pm}$. In this paper, we study the production of the charged Higgs bosons pair $phi^{pm}$ via the process $e^{+}e^{-}to phi^{+}phi^{-}$ at the International Line
In an unconventional realization of left-right symmetry, the particle corresponding to the left-handed neutrino nu_L (with SU(2)_L interactions) in the right-handed sector, call it n_R (with SU(2)_R interactions), is not its Dirac mass partner, but a
The left-right twin Higgs(LRTH) model predicts the existence of three additional Higgs bosons: one neutral Higgs $phi^{0}$ and a pair of charged Higgs bosons $phi^{pm}$. In this paper, we studied the production of a pair of charged and neutral Higgs