ﻻ يوجد ملخص باللغة العربية
We explore the quark properties at finite temperature near but above the critical temperature of the chiral phase transition. We investigate the effects of the precursory soft mode of the phase transition on the quark dispersion relation and the spectral function. It is found that there appear novel excitation spectra of quasi-quarks and quasi-antiquarks with a three-peak structure, which are not attributed to the hard-thermal-loop approximation. We show that the new spectra originate from the mixing between a quark (anti-quark) and an anti-quark hole (quark hole) caused by a ``resonant scattering of the quasi-fermions with the thermally-excited soft mode which has a small but finite excitation energy.
Near the critical temperature of the chiral phase transition, a collective excitation due to fluctuation of the chiral order parameter appears. We investigate how it affects the quark spectrum near but above the critical temperature. The calculated s
The spectrum of the SU(2) flavor baryons is studied in the frame of a relativistic chiral quark potential model based on the one-pion and one-gluon exchange mechanisms. It is argued that the N* and Delta* resonances strongly coupled to the pi-N cha
We investigate the quark spectrum near but above the critical temperature of the chiral transition, taking into account the precursory soft modes. It is found that there appear novel excitation spectra of quasi-quarks and quasi-antiquarks with a thre
It is shown that the spin polarized condensate appears in quark matter at high baryon density and low temperature due to the tensor-type four-point interaction in the Nambu-Jona-Lasinio-type model as a low energy effective theory of quantum chromodyn
Considering the density wave of scalar and pseudoscalar condensates, we study the response of quark matter to a weak external magnetic field. In an external magnetic field, the energy spectrum of the lowest Landau level becomes asymmetric about zero,