ترغب بنشر مسار تعليمي؟ اضغط هنا

NRQCD: Fundamentals and Applications to Quarkonium Decay and Production

343   0   0.0 ( 0 )
 نشر من قبل Geoffrey T. Bodwin
 تاريخ النشر 2005
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

I discuss NRQCD and, in particular, the NRQCD factorization formalism for quarkonium production and decay. I also summarize the current status of the comparison between the predictions of NRQCD factorization and experimental measurements.



قيم البحث

اقرأ أيضاً

141 - Gouranga C. Nayak 2005
We discuss factorization in heavy quarkonium production in high energy collisions using NRQCD. Infrared divergences at NNLO are not matched by conventional NRQCD matrix elements. However, we show that gauge invariance and factorization require that c onventional NRQCD production matrix elements be modified to include Wilson lines or non-abelian gauge links. With this modification NRQCD factorization for heavy quarkonium production is restored at NNLO.
We discuss heavy quarkonium production through parton fragmentation, including a review of arguments for the factorization of high-p_T particles into fragmentation functions for hadronic initial states. We investigate the further factorization of fra gmentation functions in the NRQCD formalism, and argue that this requires a modification of NRQCD octet production matrix elements to include nonabelian phases, which makes them gauge invariant. We describe the calculation of uncanceled infrared divergences in fragmentation functions that must be factorized at NNLO, and verify that they are absorbed into the new, gauge invariant matrix elements.
We study the transition of a heavy quark pair from octet to singlet color configurations at next-to-next-to-leading order (NNLO) in heavy quarkonium production. We show that the infrared singularities in this process are consistent with NRQCD factori zation to all orders in the heavy quark relative velocity v. This factorization requires the gauge-completed matrix elements that we introduced previously to prove NNLO factorization to order v ^2.
136 - Yan-Qing Ma , Kuang-Ta Chao 2017
The widely used nonrelativistic QCD (NRQCD) factorization theory now encounters some notable difficulties in describing quarkonium production. This may be due to the inadequate treatment of soft hadrons emitted in the hadronization process, which cau ses bad convergence of velocity expansion in NRQCD. In this paper, starting from QCD we propose a rigorously defined factorization approach, soft gluon factorization (SGF), to better deal with the effects of soft hadrons. After a careful velocity expansion, the SGF can be as simple as the NRQCD factorization in phenomenological studies, but has a much better convergence. The SGF may provide a new insight to understand the mechanisms of quarkonium production and decay.
215 - M. Beneke 2007
We compute the third-order correction to electromagnetic S-wave quarkonium production and annihilation rates due to the emission and absorption of an ultrasoft gluon. Our result completes the analysis of the non-relativistic quarkonium bound-state dynamics in the next-to-next-to-next-to-leading order. The impact of the ultrasoft correction on the Upsilon(1S) leptonic width and the top quark-antiquark threshold production cross section is estimated.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا