ﻻ يوجد ملخص باللغة العربية
The radiative B-> rho gamma, B-> omega gamma decay modes are caused by the FCNC process, so they give us good insight towards probing the standard model in order to search for new physics. In this paper, we compute the branching ratio, direct CP asymmetry, and isospin breaking effects using the perturbative QCD approach within the standard model.
The radiative B -> K* gamma mode is caused by a penguin operator which is a quantum correction. Thus this mode may be useful in the search for physics beyond the standard model. In this paper, we compute the branching ratio, direct CP asymmetry, and
We present a study of the decays B+ -> rho+ gamma, B0 -> rho0 gamma, and B0 -> omega gamma. The analysis is based on data containing 347 million BBbar events recorded with the BaBar detector at the PEP-II asymmetric B factory. We measure the branchin
The mixing-induced CP asymmetries in B-> K* gamma -> K_S pi^0 gamma and B-> K* gamma -> K_L pi^0 gamma are expected to be small within the standard model. So they are among the most promising decay modes to test the standard model. In this paper, we
We present an update on total and partial branching fractions and on CP asymmetries in the semi-inclusive decay B -> Xs l+l-. Further, we summarize our results on branching fractions and CP asymmetries for semi-inclusive and fully-inclusive B -> Xs g
We report measurements of isospin asymmetry $Delta_{0-}$ and difference of direct $CP$ asymmetries $Delta A_{CP}$ between charged and neutral $B to X_s gamma$ decays. This analysis is based on the data sample containing $772 times 10^6 Bbar{B}$ pairs