ترغب بنشر مسار تعليمي؟ اضغط هنا

Electroexcitation of nucleon resonances at Q^2=0.65 GeV/c^2 from a combined analysis of single- and double-pion electroproduction data

41   0   0.0 ( 0 )
 نشر من قبل Gleb Fedotov V
 تاريخ النشر 2005
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Data on single- and double-charged pion electroproduction off protons are successfully described in the second and third nucleon resonance regions with common N* photocouplings. The analysis was carried out using separate isobar models for both reactions. From the combined analysis of two exclusive channels, the gamma* p --> N*+ helicity amplitudes are obtained for the resonances P11(1440), D13(1520), S31(1620), S11(1650), F15(1680), D33(1700), D13(1700), and P13(1720) at Q2=0.65 GeV/c^2.

قيم البحث

اقرأ أيضاً

86 - J. J. Kelly , et al. 2005
We measured angular distributions of differential cross section, beam analyzing power, and recoil polarization for neutral pion electroproduction at Q^2 = 1.0 (GeV/c)^2 in 10 bins of W across the Delta resonance. A total of 16 independent response fu nctions were extracted, of which 12 were observed for the first time. Comparisons with recent model calculations show that response functions governed by real parts of interference products are determined relatively well near 1.232 GeV, but variations among models is large for response functions governed by imaginary parts and for both increases rapidly with W. We performed a nearly model-independent multipole analysis that adjusts complex multipoles with high partial waves constrained by baseline models. Parabolic fits to the W dependence of the multipole analysis around the Delta mass gives values for SMR = (-6.61 +/- 0.18)% and EMR = (-2.87 +/- 0.19)% that are distinctly larger than those from Legendre analysis of the same data. Similarly, the multipole analysis gives Re(S0+/M1+) = (+7.1 +/- 0.8)% at W=1.232 GeV, consistent with recent models, while the traditional Legendre analysis gives the opposite sign because its truncation errors are quite severe. Finally, using a unitary isobar model (UIM), we find that excitation of the Roper resonance is dominantly longitudinal with S1/2 = (0.05 +/- 0.01) GeV^(-1/2) at Q^2=1. The ReS0+ and ReE0+ multipoles favor pseudovector coupling over pseudoscalar coupling or a recently proposed mixed-coupling scheme, but the UIM does not reproduce the imaginary parts of 0+ multipoles well.
140 - M. Weis , P. Bartsch , D. Baumann 2007
The differential cross sections sigma_0=sigma_T+epsilon sigma_L, sigma_{LT}, and sigma_{TT} of pi^0 electroproduction from the proton were measured from threshold up to an additional center of mass energy of 40 MeV, at a value of the photon four-mome ntum transfer of Q^2= 0.05 GeV^2/c^2 and a center of mass angle of theta=90^circ. By an additional out-of-plane measurement with polarized electrons sigma_{LT} was determined. This showed for the first time the cusp effect above the pi^+ threshold in the imaginary part of the s-wave. The predictions of Heavy Baryon Chiral Perturbation Theory are in disagreement with these data. On the other hand, the data are somewhat better predicted by the MAID phenomenological model and are in good agreement with the dynamical model DMT.
New data are presented on the p(e,ep)pi^0 reaction at threshold at a four-momentum transfer of Q^2=0.05 GeV^2/c^2. The data were taken with the three-spectrometer setup of the A1 Collaboration at the Mainz Microtron MAMI. The complete center of mass solid angle was covered up to a center of mass energy of 4 MeV above threshold. Combined with measurements at three different values of the virtual photon polarization epsilon, the structure functions sigma_T, sigma_L, sigma_{TT}, and sigma_{TL} are determined. The results are compared with calculations in Heavy Baryon Chiral Perturbation Theory and with a phenomenological model. The measured cross section is significantly smaller than both predictions.
Results from a multi-channel partial wave analysis of elastic and inelastic $pi N$ and $gamma N$ induced reactions are presented. The analysis evidences the existence of a spin-quartet of nucleon resonances with total angular momenta $J^P=1/2^+,..., 7/2^+$. All states fall into a $pm130$,MeV mass gap centered at 1.97,GeV. The spin quartet is at variance with S-wave diquark configurations required in classical di-quark models.
Recent developments in phenomenological analysis of the CLAS data on 2$pi$ electroproduction are presented. The contributions from isobar channels and $P_{11}(1440)$, $D_{13}(1520)$ electrocouplings at $Q^{2}$ from 0.25 to 0.6 GeV$^2$ were determined from the analysis of comprehensive data on differential and fully integrated 2$pi$ cross sections. Experiment Numbers: E94-005 Group: Hall B
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا