ترغب بنشر مسار تعليمي؟ اضغط هنا

GMSB SUSY models with non pointing photons signatures in ATLAS at the LHC

48   0   0.0 ( 0 )
 نشر من قبل Damien Prieur
 تاريخ النشر 2005
  مجال البحث
والبحث باللغة English
 تأليف Damien Prieur




اسأل ChatGPT حول البحث

The reconstruction of non pointing photons is a key feature for studying gauge mediated supersymmetry breaking (GMSB) models at the LHC. In this article the angular resolution of the ATLAS electromagnetic calorimeter is characterized from a detailed simulation of the detector. Resulting performances are used to reconstruct GMSB events with a fast simulation program, taking into account reconstruction effects. Finally, the sensitivity to extract the sparticles masses and the lightest neutralino lifetime is estimated.

قيم البحث

اقرأ أيضاً

174 - S. Ambrosanio 2000
We report a study on the measurement of the SUSY breaking scale sqrt(F) in the framework of gauge-mediated supersymmetry breaking (GMSB) models at the LHC. The work is focused on the GMSB scenario where a stau is the next-to-lightest SUSY particle (N LSP) and decays into a gravitino with lifetime c*tau_NLSP in the range 0.5 m to 1 km. We study the identification of long-lived sleptons using the momentum and time of flight measurements in the muon chambers of the ATLAS experiment. A realistic evaluation of the statistical and systematic uncertainties on the measurement of the slepton mass and lifetime is performed, based on a detailed simulation of the detector response. Accessible range and precision on sqrt(F) achievable with a counting method are assessed. Many features of our analysis can be extended to the study of different theoretical frameworks with similar signatures at the LHC.
The study of QCD processes at the LHC will serve two main goals. First, the predictions of Quantum Chromodynamics will be tested and precision measurements will be performed, allowing additional constraints to be established, and providing measuremen ts of the strong coupling constant. Second, QCD processes represent a major part of the background to other Standard Model processes and signals of new physics at the LHC and therefore need to be understood in depth. An overview of various measurements of QCD-related processes to be performed at the LHC is presented, based on final states containing high-pT leptons, photons and jets. Moreover, possible deviations from QCD predictions indicating presence of new physics are discussed.
Simplified models have become a widely used and important tool to cover the more diverse phenomenology beyond constrained SUSY models. However, they come with a substantial number of caveats themselves, and great care needs to be taken when drawing c onclusions from limits based on the simplified approach. To illustrate this issue with a concrete example, we examine the applicability of simplified model results to a series of full SUSY model points which all feature a small stau-LSP mass difference, and are compatible with electroweak and flavor precision observables as well as current LHC results. Various channels have been studied using the Snowmass Combined LHC detector implementation in the Delphes simulation package, as well as the Letter of Intent or Technical Design Report simulations of the ILD detector concept at the ILC. We investigated both the LHC and ILC capabilities for discovery, separation and identification of all parts of the spectrum. While parts of the spectrum would be discovered at the LHC, there is substantial room for further discoveries and property determination at the ILC.
100 - M. Berggren 2015
If new phenomena beyond the Standard Model will be discovered at the LHC, the properties of the new particles could be determined with data from the High-Luminosity LHC and from a future linear collider like the ILC. We discuss the possible interplay between measurements at the two accelerators in a concrete example, namely a full SUSY model which features a small stau_1-LSP mass difference. Various channels have been studied using the Snowmass 2013 combined LHC detector implementation in the Delphes simulation package, as well as simulations of the ILD detector concept from the Technical Design Report. We investigate both the LHC and ILC capabilities for discovery, separation and identification of various parts of the spectrum. While some parts would be discovered at the LHC, there is substantial room for further discoveries at the ILC. We finally highlight examples where the precise knowledge about the lower part of the mass spectrum which could be acquired at the ILC would enable a more in-depth analysis of the LHC data with respect to the heavier states.
93 - Paul de Jong 2012
Recent results of searches for supersymmetry by the ATLAS collaboration in up to 2 fb-1 of sqrt(s) = 7 TeV pp collisions at the LHC are reported.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا