ﻻ يوجد ملخص باللغة العربية
The direct detection of neutralino dark matter is analysed in general supergravity scenarios, where non-universal soft scalar and gaugino masses can be present. In particular, the theoretical predictions for the neutralino-nucleon cross section are studied and compared with the sensitivity of dark matter detectors. We take into account the most recent astrophysical and experimental constraints on the parameter space, including the current limit on B(Bs-> mu+ mu-). The latter puts severe limitations on the dark matter scattering cross section, ruling out most of the regions that would be within the reach of present experiments. We show how this constraint can be softened with the help of appropriate choices of non-universal parameters which increase the Higgsino composition of the lightest neutralino and minimise the chargino contribution to the b->s transition.
Neutralino dark matter, and in particular different aspects of its detection at neutrino telescopes, has been studied within the Minimal Supersymmetric extension of the Standard Model, the MSSM. The relic density of neutralinos has been calculated us
We revisit indirect detection possibilities for neutralino dark matter, emphasizing the complementary roles of different approaches. While thermally produced dark matter often requires large astrophysical boost factors to observe antimatter signals,
In the supersymmetric (SUSY) standard model, the lightest neutralino may be the lightest SUSY particle (LSP), and it is is a candidate of the dark matter in the universe. The LSP dark matter might be produced by the non-thermal process such as heavy
In this paper, we perform a full next-to-leading order (NLO) QCD calculation of neutralino scattering on protons or neutrons in the MSSM. We match the results of the NLO QCD calculation to the scalar and axial-vector operators in the effective field
In this work we introduce RAPIDD, a surrogate model that speeds up the computation of the expected spectrum of dark matter particles in direct detection experiments. RAPIDD replaces the exact calculation of the dark matter differential rate (which in