ترغب بنشر مسار تعليمي؟ اضغط هنا

The phase diagram of three-flavor quark matter under compact star constraints

280   0   0.0 ( 0 )
 نشر من قبل David Blaschke
 تاريخ النشر 2005
  مجال البحث
والبحث باللغة English
 تأليف D. Blaschke




اسأل ChatGPT حول البحث

The phase diagram of three-flavor quark matter under compact star constraints is investigated within a Nambu--Jona-Lasinio model. Local color and electric charge neutrality is imposed for beta-equilibrated superconducting quark matter. The constituent quark masses and the diquark condensates are determined selfconsistently in the plane of temperature and quark chemical potential. Both strong and intermediate diquark coupling strengths are considered. We show that in both cases, gapless superconducting phases do not occur at temperatures relevant for compact star evolution, i.e., below T ~ 50 MeV. The stability and stucture of isothermal quark star configurations are evaluated. For intermediate coupling, quark stars are composed of a mixed phase of normal (NQ) and two-flavor superconducting (2SC) quark matter up to a maximum mass of 1.21 M_sun. At higher central densities, a phase transition to the three-flavor color flavor locked (CFL) phase occurs and the configurations become unstable. For the strong diquark coupling we find stable stars in the 2SC phase, with masses up to 1.326 M_sun. A second family of more compact configurations (twins) with a CFL quark matter core and a 2SC shell is also found to be stable. The twins have masses in the range 1.301 ... 1.326 M_sun. We consider also hot isothermal configurations at temperature T=40 MeV. When the hot maximum mass configuration cools down, due to emission of photons and neutrinos, a mass defect of 0.1 M_sun occurs and two final state configurations are possible.



قيم البحث

اقرأ أيضاً

Some properties of magnetized two flavor color superconducting (2SC) cold dense quark matter under compact star conditions (COSC) are investigated within a $SU(2)_f$ Nambu Jona-Lasinio type model. We study the phase diagram for several model parametr izations. The features of each phase are analyzed through the behavior of the chiral and superconducting condensates for increasing chemical potential or magnetic field. We show how the phases are modified in the presence of $beta$-equilibrium as well as color and electric charge neutrality conditions.
86 - Marco Ruggieri 2010
In this talk, I review the computation of the phase diagram of hot quark matter in strong magnetic field, at zero baryon density, within an effective model of Quantum Chromodynamics.
We obtain the in-medium effective potential of the three-flavor Polyakov-Quark-Meson model as a real function of real variables in the Polyakov loop variable, to allow for the study of all possible minima of the model. At finite quark chemical potent ial, the real and imaginary parts of the effective potential, in terms of the Polyakov loop variables, are made apparent, showing explicitly the fermion sign problem of the theory. The phase diagram and other equilibrium observables, obtained from the real part of the effective potential, are calculated in the mean-field approximation. The obtained results are compared to those found with the so-called saddle-point approach. Our procedure also allows the calculation of the surface tension between the chirally broken and confined phase, and the chirally restored and deconfined phase. The values of surface tension we find for low temperatures are very close to the ones recently found for two-flavor chiral models. Some consequences of our results for the early Universe, for heavy-ion collisions, and for proto-neutron stars are briefly discussed.
We evaluate the dressed Polyakov loop for hot quark matter in strong magnetic field. To compute the finite temperature effective potential, we use the Polyakov extended Nambu-Jona Lasinio model with eight-quark interactions taken into account. The ba re quark mass is adjusted in order to reproduce the physical value of the vacuum pion mass. Our results show that the dressed Polyakov loop is very sensitive to the strenght of the magnetic field, and it is capable to capture both the deconfinement crossover and the chiral crossover. Besides, we compute self-consistently the phase diagram of the model. We find a tiny split of the two aforementioned crossovers as the strength of the magnetic field is increased. Concretely, for the largest value of magnetic field investigated here, $eB=19 m_pi^2$, the split is of the order of $10%$. A qualitative comparison with other effective models and recent Lattice results is also performed.
The properties of magnetized color superconducting cold dense quark matter under compact star conditions are investigated using a $SU(2)_f$ Nambu Jona-Lasinio (NJL)-type model in which the divergences are treated using a magnetic field independent re gularization scheme in order to avoid unphysical oscillations. We study the phase diagram for several model parametrizations. The features of each phase are analyzed through the behavior of the chiral and superconducting condensates together with the different particle densities for increasing chemical potential or magnetic field. While confirming previous results derived for the zero magnetic field or isospin symmetric matter case, we show how the phases are modified in the presence of $beta$-equilibrium as well as color and electric charge neutrality conditions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا