ترغب بنشر مسار تعليمي؟ اضغط هنا

Muon g-2 Constraints to SUSY Dark Matter over the Next Decade

76   0   0.0 ( 0 )
 نشر من قبل Priscilla Cushman
 تاريخ النشر 2005
  مجال البحث
والبحث باللغة English
 تأليف Priscilla Cushman




اسأل ChatGPT حول البحث

The anomalous magnetic moment of the muon has been measured to 0.5 ppm in a series of precision experiments at the Brookhaven Alternating Gradient Synchrotron. The individual results for each sign: a(mu+)= 11 659 204(7)(5) E-10 and a(mu-) = 11 659 214(8)(3) E-10 are consistent with each other, so that we can write the average anomaly as a(mu)(exp) = 11 659 208(6) E-10 (0.5 ppm). A discrepancy between the measured value and the Standard Model (Delta a(mu)) is a signal for new physics. Assuming that such a discrepancy is due to contributions from supersymmetric particles provides a framework which can be used to constrain the mass of the dark matter particles, assumed to be the lightest neutral supersymmetric particles. The deviation from the standard model has varied between 1.5 sigma and 3 sigma significance, dominated by uncertainties in the hadronic contribution to the standard model calculation. Currently the standard model prediction is calculated to 0.6 ppm precision and Delta a(mu) = 23.5 (9.0) E-10, representing a 2.6 sigma deviation. We expect that the error on a(mu)(SM) will be reduced by a factor of two within the next decade. To fully utilize this improvement, a new g-2 run is proposed for the near future. If the mean Delta a(mu) remains the same, this would result in close to a 6 sigma discrepancy. In this case, we would expect to see SUSY particles at the LHC and use the g-2 results to measure tan beta. If, instead, the Standard Model is confirmed to this precision, gauginos must have masses higher than ~ 500 GeV/c2 and simple SUSY dark matter models will be severely constrained.


قيم البحث

اقرأ أيضاً

We explore the implications of LHC and cold dark matter searches for supersymmetric particle mass spectra in two different grand unified models with left-right symmetry, $SO(10)$ and $ SU(4)_c times SU(2)_L times SU(2)_R$ (4-2-2). We identify charact eristic differences between the two scenarios, which imply distinct correlations between experimental measurements and the particular structure of the GUT group. The gauge structure of 4-2-2 enhances significantly the allowed parameter space as compared to $SO(10)$, giving rise to a variety of coannihilation scenarios compatible with the LHC data, LSP dark matter and the ongoing muon g-2 experiment.
In the light of the recent result of the Muon g-2 experiment and the update on the test of lepton flavour universality $R_K$ published by the LHCb collaboration, we systematically build and discuss a set of models with minimal field content that can simultaneously give: (i) a thermal Dark Matter candidate; (ii) large loop contributions to $bto sellell$ processes able to address $R_K$ and the other $B$ anomalies; (iii) a natural solution to the muon $g-2$ discrepancy through chirally-enhanced contributions.
59 - David W. Hertzog 2015
I report on the progress of two new muon anomalous magnetic moment experiments, which are in advanced design and construction phases. The goal of Fermilab E989 is to reduce the experimental uncertainty of $a_mu$ from Brookhaven E821 by a factor of 4; that is, $delta a_mu sim 16 times 10^{-11}$, a relative uncertainty of 140~ppb. The method follows the same magic-momentum storage ring concept used at BNL, and pioneered previously at CERN, but muon beam preparation, storage ring internal hardware, field measuring equipment, and detector and electronics systems are all new or upgraded significantly. In contrast, J-PARC E34 will employ a novel approach based on injection of an ultra-cold, low-energy, muon beam injected into a small, but highly uniform magnet. Only a small magnetic focusing field is needed to maintain storage, which distinguishes it from CERN, BNL and Fermilab. E34 aims to roughly match the previous BNL precision in their Phase~1 installation.
We construct models with minimal field content that can simultaneously explain the muon g-2 anomaly and give the correct dark matter relic abundance. These models fall into two general classes, whether or not the new fields couple to the Higgs. For t he general structure of models without new Higgs couplings, we provide analytical expressions that only depend on the $SU(2)_L$ representation. These results allow to demonstrate that only few models in this class can simultaneously explain $(g-2)_mu$ and account for the relic abundance. The experimental constraints and perturbativity considerations exclude all such models, apart from a few fine-tuned regions in the parameter space, with new states in the few 100 GeV range. In the models with new Higgs couplings, the new states can be parametrically heavier by a factor $sqrt{1/y_mu}$, with $y_mu$ the muon Yukawa coupling, resulting in masses for the new states in the TeV regime. At present these models are not well constrained experimentally, which we illustrate on two representative examples.
We demonstrate that the recent measurement of the anomalous magnetic moment of the muon and dark matter can be simultaneously explained within the Minimal Supersymmetric Standard Model. Dark matter is a mostly-bino state, with the relic abundance obt ained via co-annihilations with either the sleptons or wino. The most interesting regions of parameter space will be tested by the next generation of dark matter direct detection experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا