ترغب بنشر مسار تعليمي؟ اضغط هنا

Theory of Neutrinos

125   0   0.0 ( 0 )
 نشر من قبل Andre de Gouvea
 تاريخ النشر 2004
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

After a brief overview of the present knowledge of neutrino masses and mixing, we summarize what can be learned about physics beyond the standard model from the various proposed neutrino experiments. We also comment on the impact of the experiments on our understanding of the origin of the matter-antimatter asymmetry of the Universe as well as what can be learned from some experiments outside the domain of neutrinos.



قيم البحث

اقرأ أيضاً

During 2004, four divisions of the American Physical Society commissioned a study of neutrino physics to take stock of where the field is at the moment and where it is going in the near and far future. Several working groups looked at various aspects of this vast field. The summary was published as a main report entitled ``The Neutrino Matrix accompanied by short 50 pa
395 - Ofelia Pisanti 2019
In the era of multi-messenger astronomy, neutrinos are among the most important astronomical messengers, due to their interaction properties. In these lessons I briefly review the main issues concerning the theory on astrophysical neutrinos.
We investigate neutrinoless double beta decay ($0 ubetabeta$) in the presence of sterile neutrinos with Majorana mass terms. These gauge-singlet fields are allowed to interact with Standard-Model (SM) fields via renormalizable Yukawa couplings as wel l as higher-dimensional gauge-invariant operators up to dimension seven in the Standard Model Effective Field Theory extended with sterile neutrinos. At the GeV scale, we use Chiral effective field theory involving sterile neutrinos to connect the operators at the level of quarks and gluons to hadronic interactions involving pions and nucleons. This allows us to derive an expression for $0 ubetabeta$ rates for various isotopes in terms of phase-space factors, hadronic low-energy constants, nuclear matrix elements, the neutrino masses, and the Wilson coefficients of higher-dimensional operators. The needed hadronic low-energy constants and nuclear matrix elements depend on the neutrino masses, for which we obtain interpolation formulae grounded in QCD and chiral perturbation theory that improve existing formulae that are only valid in a small regime of neutrino masses. The resulting framework can be used directly to assess the impact of $0 ubetabeta$ experiments on scenarios with light sterile neutrinos and should prove useful in global analyses of sterile-neutrino searches. We perform several phenomenological studies of $0 ubetabeta$ in the presence of sterile neutrinos with and without higher-dimensional operators. We find that non-standard interactions involving sterile neutrinos have a dramatic impact on $0 ubetabeta$ phenomenology, and next-generation experiments can probe such interactions up to scales of $mathcal O(100)$ TeV.
In recent experiments conducted by the OPERA collaboration, researchers claimed the observation of neutrinos propagating faster than the light speed in vacuum. If correct, their results raise several issues concerning the special theory of relativity and the standard model of fundamental particles. Here, the physical consequences of superluminal neutrinos described by a tachyonic Dirac lagrangian, are explored within the standard model of electroweak interactions. If neutrino tachyonic behavior is allowed, it could provide a simple explanation for the parity violation in weak interactions and why electroweak theory has a chiral aspect, leading to invariance under a $SU_{L}(2)times U_{Y}(1)$ gauge group. Right-handed neutrino becomes sterile and decoupled from the other particles quite naturally.
We analize the non-cyclic geometric phase for neutrinos. We find that the geometric phase and the total phase associated to the mixing phenomenon provide a tool to distinguish between Dirac and Majorana neutrinos. Our results hold for neutrinos propa gating in vacuum and through the matter. Future experiments, based on interferometry, could reveal the nature of neutrinos.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا