ﻻ يوجد ملخص باللغة العربية
We discuss the difference between n-dimensional regularization and n-dimensional reduction for processes in QCD which have an additional mass scale. Examples are heavy flavour production in hadron-hadron collisions or on-shell photon-hadron collisions where the scale is represented by the mass $m$. Another example is electroproduction of heavy flavours where we have two mass scales given by $m$ and the virtuality of the photon $Q=sqrt{-q^2}$. Finally we study the Drell-Yan process where the additional scale is represented by the virtuality $Q=sqrt{q^2}$ of the vector boson ($gamma^*, W, Z$). The difference between the two schemes is not accounted for by the usual oversubtractions. There are extra counter terms which multiply the mass scale dependent parts of the Born cross sections. In the case of the Drell-Yan process it turns out that the off-shell mass regularization agrees with n-dimensional regularization.
This paper is a slightly modified version of the introductory part of a doctoral dissertation also containing the articles hep-ph/0311268, hep-ph/0510375, hep-ph/0512177 and hep-ph/0701250. The thesis discusses effective field theory methods, in part
We illustrate the dimensional regularization technique using a simple problem from elementary electrostatics. We contrast this approach with the cutoff regularization approach, and demonstrate that dimensional regularization preserves the translation
The twisted reduced model of large $N$ QCD with two adjoint Wilson fermions is studied numerically using the Hybrid Monte Carlo method. This is the one-site model, whose large $N$ limit (large volume limit) is expected to be conformal or nearly confo
The twisted space-time reduced model of large $N$ QCD with various flavours of adjoint Wilson fermions is constructed applying the symmetric twist boundary conditions with flux $k$. The models with one and two flavours show distinctive behaviours. Fo
We present in detail the Einstein equations in the Baumgarte-Shapiro-Shibata-Nakamura formulation for the case of $D$ dimensional spacetimes with $SO(D-d)$ isometry based on a method originally introduced in Ref.1. Regularized expressions are given f