ﻻ يوجد ملخص باللغة العربية
We predict the shape of the transverse momentum p_T spectrum of Upsilon production. The distribution at low p_T is dominated by the region of small impact parameter b and may be computed reliably in perturbation theory. We resum to all orders in the strong coupling alpha_s the process-independent large logarithmic contributions that arise from initial-state gluon showers in the small p_T (< M_Upsilon) region. The cross section at large p_T is represented by the alpha_s^3 lowest-order non-vanishing perturbative contribution.
We study methods for reconstructing the momenta of invisible particles in cascade decay chains at hadron colliders. We focus on scenarios, such as SUSY and UED, in which new physics particles are pair produced. Their subsequent decays lead to two dec
$Upsilon(nS)$ and $chi_b(nP)$ (n=1,2,3) production at the LHC is studied at next-to-leading order in $alpha_s$ in nonrelativistic QCD. Feeddown contributions from higher $chi_b$ and $Upsilon$ states are all considered for lower $Upsilon$ cross sectio
We examine, as model-independently as possible, the production of bileptons at hadron colliders. When a particular model is necessary or useful, we choose the 3-3-1 model. We consider a variety of processes: q anti-q -> Y^{++} Y^{--}, u anti-d -> Y^{
Uncertainties of the MSSM predictions are due to an unknown SUSY breaking mechanism. To reduce these uncertainties, one usually imposes constraints on the MSSM parameter space. Recently, two new constraints became available, both from astrophysics: W
We present a method to compute off-shell effects for processes involving resonant particles at hadron colliders with the possibility to include realistic cuts on the decay products. The method is based on an effective theory approach to unstable part