ﻻ يوجد ملخص باللغة العربية
The reactions of electron-positron to nucleon-antinucleon pairs are studied in a non-perturbative quark model. The work suggests that the two-step process, in which the primary quark-antiquark pair forms first a vector meson which in turn decays into a hadron pair, is dominant over the one-step process in which the primary quark-antiquark pair is directly dressed by additional quark-antiquark pairs to form a hadron pair. To reproduce the experimental data of the reactions of electron-positron to proton-antiproton and electron-positron to neutron-antineutron a D-wave omega-like vector meson with a mass of around 2 GeV has to be introduced.
We investigate the production of electrons and positrons in the Milky Way within the context of dark matter annihilation. Upper limits on the relevant cross-section are obtained by combining observational data at different wavelengths (from Haslam, W
Experimental data on the total cross section of $e^+ e^-$ annihilation into hadrons are confronted with QCD and the operator product expansion using finite energy sum rules. Specifically, the power corrections in the operator product expansion, i.e.
We provide a non-perturbative expression for the hadron production in electron-positron annihilation at zero temperature in a strongly coupled, large-Nc SU(Nc) field theory with Nf << Nc quark flavors. The resulting expressions are valid to leading o
We calculate the cross section for the exclusive production of J^{PC}=0^{++} glueballs G_0 in association with the J/psi in e^+e^- annihilation using the pQCD factorization formalism. The required long-distance matrix element for the glueball is boun
Recently, various cross sections of e+e- annihilation into hadrons were accurately measured in the energy range from 0.37 to 1.39 GeV with the CMD-2 detector at the VEPP-2M collider. In the pi+pi- channel a systematic uncertainty of 0.6% has been ach