ﻻ يوجد ملخص باللغة العربية
Within a hadron-string dynamical transport approach (HSD) we investigate the attenuation of high transverse momentum ($pT$) hadrons as well as the suppression of near-side and far-side jets in $Au+Au$ collisions at invariant energies $sqrt{s}$ = 200 GeV and $sqrt{s}$ = 62.4 GeV in comparison to the data available from the Relativistic Heavy-Ion Collider (RHIC). From our transport studies we find that a significant part of the high $pT$ hadron attenuation seen experimentally can be attributed to inelastic interactions of leading pre-hadrons with the dense hadronic environment. In addition, we also show results of near-side and far-side angular correlations of high $pT$ particles from Au+Au collisions at $sqrt{s}$ = 200 GeV and $sqrt{s}$ = 62.4 GeV within this (pre-)hadronic attenuation scenario. It turns out that the near-side correlations are unaltered -- in accordance with experiment -- whereas the far-side correlations are suppressed by up to $sim$ 60% in central collisions. Since a much larger suppression is observed experimentally for these reactions in central reactions we conclude that there should be strong additional (and earlier) partonic interactions in the dense and possibly colored medium created in Au+Au collisions at RHIC.
Typically the materialization of high energetic transverse partons to hadronic jets is assumed to occur outside the reaction zone in a relativistic heavy ion collision. In contrast, a quantum mechanical estimate yields a time on the order of only a f
We show that the large corrections due to final state interactions (FSI) in the D^+to pi^-pi^+pi^+, D^+_sto pi^-pi^+pi^+, and D^+to K^-pi^+pi^+ decays can be accounted for by invoking scattering amplitudes in agreement with those derived from phase s
Within five different approaches to parton propagation and energy loss in dense matter, a phenomenological study of experimental data on suppression of large $p_T$ single inclusive hadrons in heavy-ion collisions at both RHIC and LHC was carried out.
We evaluate the non-resonant decay amplitude of the process $B^pmto K^pmpi^+ pi^-$ using an approach based on final state hadronic interactions described in terms of meson exchanges. We conclude that this mechanism generates inhomogeneities in the Dalitz plot of the B decay.
This presentation reports recent results from the hadronic final state in DIS at HERA. Forward jet and $pi^0$ production have been measured by the H1 experiment. The forward jet production cross section shows significant deviation from the prediction