ﻻ يوجد ملخص باللغة العربية
We review how the rho meson can be modeled in an effective theory and discuss the implications of applying this approach to heavier spin-one resonances. Georgis vector limit is explored, and its relationship to locality in a deconstructed extra-dimension is discussed. We then apply the formalism for rhos to strongly coupled theories of electroweak symmetry breaking, studying the lightest spin-one techni-rho resonances. Understanding these new particles in Little Higgs models can shed light on previously incalculable, ultraviolet sensitive physics, including the mass of the Higgs boson.
We study $bar qq$-hybrid mixing for the light vector mesons and $bar qq$-glueball mixing for the light scalar mesons in Monte-Carlo based QCD Laplace sum rules. By calculating the two-point correlation function of a vector $bar qgamma_mu q$ (scalar
A previous formal derivation of the effective chiral Lagrangian for low-lying pseudoscalar mesons from first-principles QCD without approximations [Wang et al., Phys. Rev. D61, (2000) 54011] is generalized to further include scalar, vector, and axial
We calculate the tree-level expressions for the electroweak precision observables in the SU(5)/SO(5) littlest Higgs model. The source for these corrections are the exchange of heavy gauge bosons, explicit corrections due to non-linear sigma-model dyn
We develop a non-perturbative analysis of the electro-production of heavy vector mesons ($phi$, $J/Psi$) from threshold to high energy. We use the holographic construction with bulk confinement enforced through a soft wall. Using Witten diagrams, we
The magnetic and quadrupole moments of the vector and axial-vector mesons containing heavy quark are estimated within the light cone sum rules method. Our predictions on magnetic moments for the vector mesons are compared with the results obtained by other approaches.