ﻻ يوجد ملخص باللغة العربية
It has been recently found that the heavy quark-antiquark QQbar pair multiplicity, in certain phase space region (QQbar at short distance, soft and with small velocity), satisfies an evolution equation formally similar to the BFKL equation for the high energy scattering amplitude. We find the exact solution of the QQbar-equation and discuss the differences with the BFKL scattering amplitude.
We derive the solution of the NLO BFKL equation by constructing its eigenfunctions perturbatively, using an expansion around the LO BFKL (conformal) eigenfunctions. This method can be used to construct a solution of the BFKL equation with the kernel
We study jet physics in the high energy regime of QCD. Based on the NLO BFKL equation, we construct a vertex for the production of a jet at central rapidity in k_T-factorization. A jet algorithm is introduced, and we take special care of the separati
The BK equation in the conformal basis is considered and analyzed. It is shown that at high energy a factorization of the coordinate and rapidity dependence should hold. This allows to simplify significantly the from of the equation under discussion.
An analytical solution of the Dirac equation with a Cornell potential, with identical scalar and vectorial parts, is presented. The solution is obtained by using the linear potential solution, related to Airy functions, multiplied by another function
Production of a forward Drell-Yan lepton pair accompanied by a jet separated by a large rapidity interval is proposed to study the BFKL evolution at the LHC. Several observables to be measured are presented including the azimuthal angle dependence of