ترغب بنشر مسار تعليمي؟ اضغط هنا

CPT Violating Decoherence and LSND: a possible window to Planck scale Physics

71   0   0.0 ( 0 )
 نشر من قبل Gabriela Barenboim
 تاريخ النشر 2004
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Decoherence has the potential to explain all existing neutrino data including LSND results, without enlarging the neutrino sector. This particular form of CPT violation can preserve the equality of masses and mixing angles between particle and antiparticle sectors, and still provide seizable differences in the oscillation patterns. A simplified minimal model of decoherence is sufficient to explain the existing neutrino data quite neatly, while making dramatic predictions for the upcoming experiments. Some comments on the order of the decoherence parameters in connection with theoretically expected values from some models of quantum-gravity are given. In particular, the quantum gravity decoherence as a primary origin of the neutrino mass differences scenario is explored, and even a speculative link between the neutrino mass-difference scale to the dark energy density component of the Universe today is drawn.

قيم البحث

اقرأ أيضاً

69 - Ralf Lehnert 2009
In recent years, the breakdown of spacetime symmetries has been identified as a promising research field in the context of Planck-scale phenomenology. For example, various theoretical approaches to the quantum-gravity problem are known to accommodate minute violations of CPT invariance. This talk covers various topics within this research area. In particular, some mechanisms for spacetime-symmetry breaking as well as the Standard-Model Extension (SME) test framework will be reviewed; the connection between CPT and Lorentz invariance in quantum field theory will be exposed; and various experimental CPT tests with emphasis on matter--antimatter comparisons will be discussed.
We carry out a systematic study of the bounds that can be set on Planck-scale deformations of relativistic symmetries and CPT from precision measurements of particle and antiparticle lifetimes. Elaborating on our earlier work [1] we discuss a new for m of departure from CPT invariance linked to the possibility of a non-trivial geometry of four-momentum and its consequences for the particle and antiparticle mass-shells and decay probabilities. Our main result is a collection of experimental bounds that can be obtained for the deformation parameter of the theoretical model under consideration based on current data and sensitivities of planned experiments at high energies.
We review the status of CPT violation in the neutrino sector. Apart from LSND, current data favors three flavors of light stable neutrinos and antineutrinos, with both halves of the spectrum having one smaller mass splitting and one larger mass split ting. Oscillation data for the smaller splitting is consistent with CPT. For the larger splitting, current data favor an antineutrino mass-squared splitting that is an order of magnitude larger than the corresponding neutrino splitting, with the corresponding mixing angle less-than-maximal. This CPT-violating spectrum is driven by recent results from MINOS, but is consistent with other experiments if we ignore LSND. We describe an analysis technique which, together with MINOS running optimized for muon antineutrinos, should be able to conclusively confirm the CPT-violating spectrum proposed here, with as little as three times the current data set. If confirmed, the CPT-violating neutrino mass-squared difference would be an order of magnitude less than the current most-stringent upper bound on CPT violation for quarks and charged leptons.
We show that deformed relativistic kinematics, expected to emerge in a flat-spacetime limit of quantum gravity, predicts different lifetimes for particles and their antiparticles. This phenomenon is a consequence of Planck-scale modifications of the action of discrete symmetries. In particular we focus on deformations of the action of CPT derived from the kappa-Poincare algebra, the most studied example of Planck-scale deformation of relativistic symmetries. Looking at lifetimes of muons and anti-muons we are able to derive an experimental bound on the deformation parameter of kappa > 4x10^14 GeV from measurements at the LHC. Such bound has the potential to reach the value of kappa > 2x10^16 GeV using measurements at the planned Future Circular Collider (FCC).
Based on the motivation that some quantum gravity theories predicts the Lorentz Invariance Violation (LIV) around Planck-scale energy levels, this paper proposes a new formalism that addresses the possible effects of LIV in the electrodynamics. This formalism is capable of changing the usual electrodynamics through high derivative arbitrary mass dimension terms that includes a constant background field controlling the intensity of LIV in the models, producing modifications in the dispersion relations in a manner that is similar to the Myers-Pospelov approach. With this framework, it was possible to generate a CPT-even and CPT-odd generalized modifications of the electrodynamics in order to study the stability and causality of these theories considering the isotropic case for the background field. An additional analysis of unitarity at tree level was considered by studying the saturated propagators. After this analysis, we conclude that, while CPT-even modifications always preserves the stability, causality and unitarity in the boundaries of the effective field theory and therefore may be good candidates for field theories with interactions, the CPT-odd one violates causality and unitarity. This feature is a consequence of the vacuum birefringence characteristics that are present in CPT-odd theories for the photon sector.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا