ترغب بنشر مسار تعليمي؟ اضغط هنا

Dark Matter, Light Stops and Electroweak Baryogenesis

66   0   0.0 ( 0 )
 نشر من قبل Csaba Balazs
 تاريخ النشر 2004
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We examine the neutralino relic density in the presence of a light top squark, such as the one required for the realization of the electroweak baryogenesis mechanism, within the minimal supersymmetric standard model. We show that there are three clearly distinguishable regions of parameter space, where the relic density is consistent with WMAP and other cosmological data. These regions are characterized by annihilation cross sections mediated by either light Higgs bosons, Z bosons, or by the co-annihilation with the lightest stop. Tevatron collider experiments can test the presence of the light stop in most of the parameter space. In the co-annihilation region, however, the mass difference between the light stop and the lightest neutralino varies between 15 and 30 GeV, presenting an interesting challenge for stop searches at hadron colliders. We present the prospects for direct detection of dark matter, which provides a complementary way of testing this scenario. We also derive the required structure of the high energy soft supersymmetry breaking mass parameters where the neutralino is a dark matter candidate and the stop spectrum is consistent with electroweak baryogenesis and the present bounds on the lightest Higgs mass.



قيم البحث

اقرأ أيضاً

Models of asymmetric dark matter (ADM) seek to explain the apparent coincidence between the present-day mass densities of visible and dark matter, $Omega_{mathrm{DM}} simeq 5Omega_{mathrm{VM}}$. However, most ADM models only relate the number densiti es of visible and dark matter without motivating the similar particle masses. We expand upon a recent work that obtained a natural mass relationship in a mirror matter ADM model with two Higgs doublets in each sector, by looking to implement dark electroweak baryogenesis as the means of asymmetry generation. We explore two aspects of the mechanism: the nature of the dark electroweak phase transition, and the transfer of particle asymmetries between the sectors by the use of portal interactions. We find that both aspects can be implemented successfully for various regions of the parameter space. We also analyse one portal interaction -- the neutron portal -- in greater detail, in order to satisfy the observational constraints on dark radiation.
We investigate if the CP violation necessary for successful electroweak baryogenesis may be sourced by the neutrino Yukawa couplings. In particular, we consider an electroweak scale Seesaw realization with sizable Yukawas where the new neutrino singl ets form (pseudo)-Dirac pairs, as in the linear or inverse Seesaw variants. We find that the baryon asymmetry obtained strongly depends on how the neutrino masses vary within the bubble walls. Moreover, we also find that flavour effects critically impact the final asymmetry obtained and that, taking them into account, the observed value may be obtained in some regions of the parameter space. This source of CP violation naturally avoids the strong constraints from electric dipole moments and links the origin of the baryon asymmetry of the Universe with the mechanism underlying neutrino masses. Interestingly, the mixing of the active and heavy neutrinos needs to be sizable and could be probed at the LHC or future collider experiments.
A very simple way to obtain comparable baryon and DM densities in the early Universe is through their contemporary production from the out-of-equilibrium decay of a mother particle, if both populations are suppressed by comparably small numbers, i.e. the CP violation in the decay and the branching fraction respectively. We present a detailed study of this kind of scenario in the context of a R-parity violating realization of the MSSM in which the baryon asymmetry and the gravitino Dark Matter are produced by the decay of a Bino. The implementation of this simple picture in a realistic particle framework results, however, quite involving, due to the non trivial determination of the abundance of the decaying Bino, as well as due to the impact of wash-out processes and of additional sources both for the baryon asymmetry and the DM relic density. In order to achieve a quantitative determination of the baryon and Dark Matter abundances, we have implemented and solved a system of coupled Boltzmann equations for the particle species involved in their generation, including all the relevant processes. In the most simple, but still general, limit, in which the processes determining the abundance and the decay rate of the Bino are mediated by degenerate right-handed squarks, the correct values of the DM and baryon relic densities are achieved for a Bino mass between 50 and 100 TeV, Gluino NLSP mass in the range 15-60 TeV and a gravitino mass between 100 GeV and few TeV. These high masses are unfortunately beyond the kinematical reach of LHC. On the contrary, an antiproton signal from the decays of the gravitino LSP might be within the sensitivity of AMS-02 and gamma-ray telescopes.
144 - Marcela Carena 2011
We analyze the stability of the vacuum and the electroweak phase transition in the NMSSM close to the Peccei-Quinn symmetry limit. This limit contains light Dark Matter (DM) particles with a mass significantly smaller than the weak scale and also lig ht CP-even and CP-odd Higgs bosons. Such light particles lead to a consistent relic density and facilitate a large spin-independent direct DM detection cross section, that may accommodate the recently reported signatures at the DAMA and CoGeNT experiments. Studying the one-loop effective potential at finite temperature, we show that when the lightest CP-even Higgs mass is of the order of a few GeV, the electroweak phase transition tends to become first order and strong. The inverse relationship between the direct-detection cross-section and the lightest CP-even Higgs mass implies that a cross-section of the order of 10$^{-41}$ cm$^2$ is correlated with a strong first order phase transition.
Conventional scenarios of electroweak (EW) baryogenesis are strongly constrained by experimental searches for CP violation beyond the SM. We propose an alternative scenario where the EW phase transition and baryogenesis occur at temperatures of the o rder of a new physics threshold $Lambda$ far above the Fermi scale, say, in the $100-1000$ TeV range. This way the needed new sources of CP-violation, together with possible associated flavor-violating effects, decouple from low energy observables. The key ingredient is a new CP- and flavor-conserving sector at the Fermi scale that ensures the EW symmetry remains broken and sphalerons suppressed at all temperatures below $Lambda$. We analyze a minimal incarnation based on a linear $O(N)$ model. We identify a specific large-$N$ limit where the effects of the new sector are vanishingly small at zero temperature while being significant at finite temperature. This crucially helps the construction of realistic models. A number of accidental factors, ultimately related to the size of the relevant SM couplings, force $N$ to be above $sim 100$. Such a large $N$ may seem bizarre, but it does affect the simplicity of the model and in fact it allows us to carry out a consistent re-summation of the leading contributions to the thermal effective potential. Extensions of the SM Higgs sector can be compatible with smaller values $Nsim 20-30$. Collider signatures are all parametrically suppressed by inverse powers of $N$ and may be challenging to probe, but present constraints from direct dark matter searches cannot be accommodated in the minimal model. We discuss various extensions that satisfy all current bounds. One of these involves a new gauge force confining at scales between $sim1$ GeV and the weak scale.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا