ترغب بنشر مسار تعليمي؟ اضغط هنا

Isospin Squeezed States, Disoriented Chiral condensates and Pion Production: A Dynamic Group Theoretical Approach

190   0   0.0 ( 0 )
 نشر من قبل Bindu Anubha Bambah
 تاريخ النشر 2004
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We make a complete dynamical study of Isotopic spin conservation effects on the multiplicity distributions of both hard and soft pions emitted in a quark gluon plasma undergoing a non-equilibrium phase transition.

قيم البحث

اقرأ أيضاً

We study the dynamics of the chiral phase transition expected during the expansion of the quark-gluon plasma produced in a high energy hadron or heavy ion collision, using the $O(4)$ linear sigma model in the mean field approximation. Imposing boost invariant initial conditions at an initial proper time $tau_0$ and starting from an approximate equilibrium configuration, we investigate the possibility of formation of disoriented chiral condensate during the expansion. In order to create large domains of disoriented chiral condensates low-momentum instabilities have to last for long enough periods of time. Our simulations show no instabilities for an initial thermal configuration. For some of the out-of-equilibrium initial states studied, the fluctuation in the number of particles with low transverse momenta become large at late proper times.
A theoretical framework is developed for treating the quantization of the photons in a spacetime with a longitudinal expansion. This can be used to study the production of the photons through the non-equilibrium relaxation of a disoriented chiral con densate presumably formed in the expanding hot central region in ultra-relativistic heavy-ion collisions. These photons can be a signature of the formation of disoriented chiral condensates in the direct photon measurements of heavy-ion collisions.
In this paper, we consider two-flavor QCD at zero temperature and finite isospin chemical potential ($mu_I$) using a model-independent analysis within chiral perturbation theory at next-to-leading order. We calculate the effective potential, the chir al condensate and the pion condensate in the pion-condensed phase at both zero and nonzero pionic source. We compare our finite pionic source results for the chiral condensate and the pion condensate with recent (2+1)-flavor lattice QCD results and find that they are in excellent agreement.
We show that an event-by-event fluctuation of the ratio of neutral pions or resulting photons to charged pions can be used as an effective probe for the formation of disoriented chiral condensates. The fact that the neutral pion fraction produced in case of disoriented chiral condensate formation has a characteristic extended non gaussian shape, is shown to be the key factor which forms the basis of the present analysis.
Weak pion production off the nucleon at low energies has been systematically investigated in manifestly relativistic baryon chiral perturbation theory with explicit inclusion of the $Delta$(1232) resonance. Most of the involved low-energy constants h ave been previously determined in other processes such as pion-nucleon elastic scattering and electromagnetic pion production off the nucleon. For numerical estimates, the few remaining constants are set to be of natural size. As a result, the total cross sections for single pion production on neutrons and protons, induced either by neutrino or antineutrino, are predicted. Our results are consistent with the scarce existing experimental data except in the $ u_mu nto mu^-npi^+$ channel, where higher-order contributions might still be significant. The $Delta$ resonance mechanisms lead to sizeable contributions in all channels, especially in $ u_mu pto mu^- ppi^+$, even though the considered energies are close to the production threshold. The present study provides a well founded low-energy benchmark for phenomenological models aimed at the description of weak pion production processes in the broad kinematic range of interest for current and future neutrino-oscillation experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا