ﻻ يوجد ملخص باللغة العربية
A comparison of the linear sigma model (L$sigma$M) and Chiral Perturbation Theory (ChPT) predictions for pion and kaon dynamics is presented. Lowest and next-to-leading order terms in the ChPT amplitudes are reproduced if one restricts to scalar resonance exchange. Some low energy constants of the order $p^4$ ChPT Lagrangian are fixed in terms of scalar meson masses. Present values of these low energy constants are compatible with the L$sigma$M dynamics. We conclude that more accurate values would be most useful either to falsify the L$sigma$M or to show its capability to shed some light on the controversial scalar physics.
We present a comprehensive analysis of form factors for two light pseudoscalar mesons induced by scalar, vector, and tensor quark operators. The theoretical framework is based on a combination of unitarized chiral perturbation theory and dispersion r
We show that the multicomponent meson systems can be described by chiral perturbation theory. We chiefly focus on a system of two pion gases at different isospin chemical potential, deriving the general expression of the chiral Lagrangian, the ground
We discuss the vector meson masses within the context of Chiral Perturbation Theory performing an expansion in terms of the momenta, quark masses and 1/Nc. We extend the previous analysis to include isospin breaking effects and also include up to ord
We consider 2+1 flavor Wilson Chiral Perturbation Theory including the lattice spacing contributions of O($a^{2}$). We adopt a power counting appropriate for the unquenched lattice simulations carried out by the CP-PACS/JLQCD collaboration and comput
Integral equations for meson-baryon scattering amplitudes are obtained by utilizing time-ordered perturbation theory for a manifestly Lorentz-invariant formulation of baryon chiral perturbation theory. Effective potentials are defined as sums of two-