ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing the Higgs self-coupling at hadron colliders using rare decays

84   0   0.0 ( 0 )
 نشر من قبل Ulrich Baur
 تاريخ النشر 2003
  مجال البحث
والبحث باللغة English
 تأليف U. Baur




اسأل ChatGPT حول البحث

We investigate Higgs boson pair production at hadron colliders for Higgs boson masses m_Hleq 140 GeV and rare decay of one of the two Higgs bosons. While in the Standard Model the number of events is quite low at the LHC, a first, albeit not very precise, measurement of the Higgs self-coupling is possible in the gg -> HH -> bbar{b}gammagamma channel. A luminosity-upgraded LHC could improve this measurement considerably. A 200 TeV VLHC could make a measurement of the Higgs self-coupling competitive with a next-generation linear collider. In the MSSM we find a significant region with observable Higgs pair production in the small tanbeta regime, where resonant production of two light Higgs bosons might be the only hint at the LHC of an MSSM Higgs sector.



قيم البحث

اقرأ أيضاً

Rare B hadron decays provide an excellent test bench for the Standard Model and can probe new physics models. We review the experimental progress of the searches for rare leptonic B decays ($brightarrow ell^+ ell^-$ and $brightarrow s ell^+ ell^-$) at LHC and Tevatron experiments.
We propose a method to probe the coupling of the Higgs to strange quarks by tagging strange jets at future lepton colliders. For this purpose we describe a jet-flavor observable, $J_F$, that is correlated with the flavor of the quark associated with the hard part of the jet. Using this variable, we set up a strangeness tagger aimed at studying the decay $hto sbar{s}$. We determine the sensitivity of our method to the strange Yukawa coupling, and find it to be of the order of the standard-model expectation.
We explore the collider relevance of a charge-radius coupling of the composite Higgs boson. This coupling offers a deep probe of the composite nature of the Higgs mechanism, being sensitive to the electromagnetic and weak isospin structure of its con stituents. The main collider effect consists in the production of the Higgs boson in association with a light composite pseudo-scalar. We present an exploratory cut-and-count analysis at hadron colliders, like the LHC, showing that an efficient background suppression can be achieved. More sophisticated techniques, however, are necessary to select a sufficient number of signal events, due to the small production rates. This justifies further investigation of this channel, which is highly complementary to other searches for compositeness in the Higgs sector.
159 - William B. Kilgore 2002
I report on a calculation of the inclusive Higgs boson production cross section at hadron colliders at next-to-next-to-leading order in QCD. The result is computed as an expansion about the threshold region. By continuing the expansion to very high o rder, we map the result onto basis functions and obtain the result in closed analytic form.
We propose a novel kinematic method to expedite the discovery of the double Higgs ($hh$) production in the $ell^+ell^- b bar{b} + E_T hspace{-0.52cm} big / ~$ final state. We make full use of recently developed kinematic variables, as well as the var iables $it Topness$ for the dominant background (top quark pair production) and $it Higgsness$ for the signal. We obtain a significant increase in sensitivity compared to the previous analyses which used sophisticated algorithms like boosted decision trees or neutral networks. The method can be easily generalized to resonant $hh$ production as well as other non-resonant channels.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا