ﻻ يوجد ملخص باللغة العربية
In this thesis we consider the polarized deep inelastic scattering in the region of low values of Bjorken variable, $x$. We formulate the evolution equations for the unintegrated parton distributions which include a complete resummation of the double logarithmic contributions, $ln^2(1/x)$. Afterwards, these equations are completed with the standard LO and NLO DGLAP evolution terms, in order to obtain the proper behaviour of the parton distributions at moderate and large values of $x$. The equations obtained are applied to the following observables and processes: (i) to the nucleon structure function, $g_1$, in the polarized deep inelastic scattering, (ii) to the structure function of the polarized photon, $g_1^{gamma}$, in the scattering of a lepton on a polarized photon, and (iii) to the differential structure function, $x_J d^2g_1/dx_J dk_J^2$, in the polarized deep inelastic scattering accompanied by a forward jet. Case (iii) is proposed to be a test process for the presence and the magnitude of the $ln^2(1/x)$ contributions. For each process the consequences of including the logarithmic corrections are studied in a detail. After integrating out the structure function, $g_1$, the moments of the nucleon structure function are obtained. The contribution of the region of low $x$ to these moments is estimated, and then discussed in the context of the spin sum rules. Finally, some predictions for the observables, the asymmetry and the cross sections, in the processes (i)-(iii) are given. They are important to planned experiments with the polarized HERA and linear colliders, which will probe the region of low values of Bjorken $x$.
For an accurate description of the polarized deep inelastic scattering at low $x$ including the logarithmic corrections, $ln^2(1/x)$, is required. These corrections resummed strongly influence the behaviour of the spin structure functions and their m
We have carried out a NLO analysis of the world data on polarized DIS in the MS/bare scheme. We have studied two models of the parametrizations of the input parton densities, the first due to Brodsky, Burkhardt and Schmidt (BBS) which gives a simulta
We present a first calculation of the heavy flavor contribution to the longitudinally polarized DIS structure function $g_1$, differential in the transverse momentum or the rapidity of the observed heavy antiquark $overline{Q}$. All results are obtai
The FORTRAN code POLRAD 2.0 for radiative correction calculation in inclusive and semi-inclusive deep inelastic scattering of polarized leptons by polarized nucleons and nuclei is described. Its theoretical basis, structure and algorithms are discussed in details.
We use soft-collinear effective theory (SCET) to study the factorization properties of deep inelastic scattering in the region of phase space where 1-x = O(Lambda_{QCD/Q}). By applying a regions analysis to loop diagrams in the Breit frame, we show t