ﻻ يوجد ملخص باللغة العربية
The presence of domain walls separating regions of unbroken $SU(2)_L$ and $SU(2)_R$ is shown to provide necessary conditions for leptogenesis which converts later to the observed Baryon aymmetry. The strength of lepton number violation is related to the majorana neutrino mass and hence related to current bounds on light neutrino masses. Thus the observed neutrino masses and the Baryon asymmetry can be used to constrain the scale of Left-Right symmetry breaking.
We investigate the possibility of neutrinoless double beta decay ($0 ubetabeta$) and leptogenesis within the Alternative Left-Right Model (ALRM). Unlike the usual left-right symmetric model, ALRM features a Majorana right-handed neutrino which does n
A simple extension of the minimal left-right symmetric supersymmetric grand unified theory model is constructed by adding two pairs of superfields. This naturally violates the partial Yukawa unification predicted by the minimal model. After including
We perform a thermal unflavored leptogenesis analysis on minimal left-right symmetric models with discrete left-right symmetry identified as generalized parity or charge conjugation. When left-right symmetry is unbroken in the lepton Yukawa sector, t
We argue that dark matter can automatically arise from a gauge theory that possesses a non-minimal left-right gauge symmetry, SU(3)_C otimes SU(M)_L otimes SU(N)_R otimes U(1)_X, for (M,N) = (2,3), (3,2), (3,3), cdots, and (5,5).
We construct the minimal supersymmetric left-right theory and show that at the renormalizable level it requires the existence of an intermediate $B-L$ breaking scale. The subsequent symmetry breaking down to MSSM automatically preserves R-symmetry. F