ﻻ يوجد ملخص باللغة العربية
We calculate the $Bto D^{(*)}$ form factors in the heavy-quark and large-recoil limits in the perturbative QCD framework based on $k_T$ factorization theorem, assuming the hierachy $M_Bgg M_{D^{(*)}}gg barLambda$, with the $B$ meson mass $M_B$, the $D^{(*)}$ meson mass $M_{D^{(*)}}$, and the heavy meson and heavy quark mass difference $barLambda$. The qualitative behavior of the light-cone $D^{(*)}$ meson wave function and the associated Sudakov resummation are derived. The leading-power contributions to the $Bto D^{(*)}$ form factors, characterized by the scale $barLambdasqrt{M_B/M_{D^{(*)}}}$, respect the heavy-quark symmetry. The next-to-leading-power corrections in $1/M_B$ and $1/M_{D^{(*)}}$, characterized by a scale larger than $sqrt{barLambda M_B}$, are estimated to be less than 20%. The $D^{(*)}$ meson wave function is determined from the fit to the observed $Bto D^{(*)} l u$ decay spectrum, which can be employed to make predictions for nonleptonic decays, such as $Bto D^{(*)}pi(rho)$.
We compute perturbative QCD corrections to $B to D$ form factors at leading power in $Lambda/m_b$, at large hadronic recoil, from the light-cone sum rules (LCSR) with $B$-meson distribution amplitudes in HQET. QCD factorization for the vacuum-to-$B$-
We derive new QCD sum rules for $Bto D$ and $Bto D^*$ form factors. The underlying correlation functions are expanded near the light-cone in terms of $B$-meson distribution amplitudes defined in HQET, whereas the $c$-quark mass is kept finite. The le
The $H^*Hpi$ form factor for H = B and D mesons is evaluated in a QCD sum rule calculation. We study the Borel sum rule for the three point function of two pseudoscalar and one vector meson currents up to order four in the operator product expansion.
Applying the vacuum-to-$B$-meson correlation functions with an interpolating current for the light vector meson we construct the light-cone sum rules (LCSR) for the effective form factors $xi_{parallel}(n cdot p)$, $xi_{perp}(n cdot p)$, $Xi_{paralle
We report on our calculation of the B to D^(*) ell u form factors in 2+1 flavor lattice QCD. The Mobius domain-wall action is employed for light, strange, charm and bottom quarks. At lattice cutoffs 1/a sim 2.4, 3.6 and 4.5 GeV, we simulate bottom q