ترغب بنشر مسار تعليمي؟ اضغط هنا

Baryon Form Factors at High Momentum Transfer and GPDs

38   0   0.0 ( 0 )
 نشر من قبل Paul Stoler
 تاريخ النشر 2002
  مجال البحث
والبحث باللغة English
 تأليف Paul Stoler




اسأل ChatGPT حول البحث

Nucleon elastic and transition form factors at high momentum transfer -t are treated in terms of generalized parton distributions in a two-body framework. In this framework the high -t dependence of the form factors give information about the high k_perp, or short distance b_perp correlations of nucleon model wave functions. Applications are made to elastic and resonance nucleon form factors, and real Compton Scattering.

قيم البحث

اقرأ أيضاً

The pion electromagnetic form factor is calculated at lower and higher momentum transfer in order to explore constituent quark models and the differences among those models. In particular, the light-front constituent quark model is utilized here to c alculate the pion electromagnetic form factor at lower and higher energies. The matrix elements of the electromagnetic current, are calculated with both plus and minus components of the electromagnetic current in the light-front. Further, the electromagnetic form factor is compared with other models in the literature and experimental data.
The axial form factor as well as the axial charge of octet baryons are studied in the perturbative chiral quark model (PCQM) with the quark wave functions predetermined by fitting the theoretical results of the proton charge form factor to experiment al data. The theoretical results are found, based on the predetermined quark wave functions, in good agreement with experimental data and lattice values. This may indicate that the electric charge and axial charge distributions of the constituent quarks are the same. The study reveals that the meson cloud plays an important role in the axial charge of octet baryons, contributing 30%-40% to the total values, and strange sea quarks have a considerable contribution to the axial charge of the $Sigma$ and $Xi$.
We report the measurement of near threshold neutral pion electroproduction cross sections and the extraction of the associated structure functions on the proton in the kinematic range $Q^2$ from 2 to 4.5 GeV$^2$ and $W$ from 1.08 to 1.16 GeV. These m easurements allow us to access the dominant pion-nucleon s-wave multipoles $E_{0+}$ and $S_{0+}$ in the near-threshold region. In the light-cone sum-rule framework (LCSR), these multipoles are related to the generalized form factors $G_1^{pi^0 p}(Q^2)$ and $G_2^{pi^0 p}(Q^2)$. The data are compared to these generalized form factors and the results for $G_1^{pi^0 p}(Q^2)$ are found to be in good agreement with the LCSR predictions, but the level of agreement with $G_2^{pi^0 p}(Q^2)$ is poor.
We develop techniques to calculate the four Delta electromagnetic form factors using lattice QCD, with particular emphasis on the sub-dominant electric quadrupole form factor that probes deformation of the Delta. Results are presented for pion masses down to approximately 350 MeV for three cases: quenched QCD, two flavors of dynamical Wilson quarks, and three flavors of quarks described by a mixed action combining domain wall valence quarks and dynamical staggered sea quarks. The magnetic moment of the Delta is chirally extrapolated to the physical point and the Delta charge density distributions are discussed.
The electromagnetic properties of baryon octet are studied in the perturbative chiral quark model (PCQM). The relativistic quark wave function is extracted by fitting the theoretical results of the proton charge form factor to experimental data and t he predetermined quark wave function is applied to study the electromagnetic form factors of other octet baryons as well as magnetic moments, charge and magnetic radii. The PCQM results are found, based on the predetermined quark wave function, in good agreement with experimental data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا