ﻻ يوجد ملخص باللغة العربية
In the universal extra dimensions (UED) scenario, the tree level masses of the first level Kaluza-Klein (KK) excitations of Standard Model particles are essentially degenerate. Radiative corrections will, however, lift this degeneracy, allowing the first level excitations to decay to the lightest KK particle (LKP), which is the gamma^*. KK number conservation implies that the LKP is stable. Then, since the SM particles radiated during these decays are rather soft, the observation of KK excitations production and decay in collider experiments will be quite difficult. We propose to add to this model KK number violating interactions mediated by gravity, which allow the gamma^* to decay to a photon and a KK graviton. For a variety a models and a large range of parameters, these decays will occur within the detector. Thus, pair production of KK excitations will give rise to a striking collider signal, consisting of two hard photons plus large missing energy (due to escaping gravitons). We evaluate the cross-section for these signals at the Tevatron and LHC, and derive the reach of these colliders in the search for universal extra dimensions.
The minimal Universal Extra Dimension scenario is highly constrained owing to opposing constraints from the observed relic density on the one hand, and the non-observation of new states at the LHC on the other. Simple extensions in five-dimensions ca
We consider the universal extra dimensions scenario of Appelquist, Cheng, and Dobrescu, in which all of the SM fields propagate into one extra compact dimension, estimated therein to be as large as $sim (350$ GeV$)^{-1}$. Tree-level KK number conserv
We review the six dimensional universal extra dimension models compactified on the sphere $S^2$, the orbifold $S^2/Z_2$, and the projective sphere, which are based on the spontaneous compactification mechanism on the sphere. In particular, we spell o
We contrast the experimental signatures of low energy supersymmetry and the model of Universal Extra Dimensions and discuss various methods for their discrimination at hadron and lepton colliders. We study the discovery reach of hadron colliders for
We reconsider the constraints on Universal Extra Dimensions (UED) models arising from precision electroweak data. We take into account the subleading contributions from new physics (expressed in terms of the X,Y ... variables), as well as two loop co