ترغب بنشر مسار تعليمي؟ اضغط هنا

Diffractive Vector Meson Production in k_t-Factorization Approach

106   0   0.0 ( 0 )
 نشر من قبل Igor Ivanov
 تاريخ النشر 2002
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe the current status of the diffractive vector meson production calculations within the k_t-factorization approach. Since the amplitude of the vector meson production off a proton is expressed via the differential gluon structure function (DGSF), we take a closer look at the latter and present results of our new improved determination of the DGSF from the structure function F_2p. Having determined the differential glue, we proceed to the k_t-factorization results for the production of various vector mesons. We argue that the properties of the vector meson production can reveal the internal spin-angular and radial structure of the vector meson.



قيم البحث

اقرأ أيضاً

77 - S.P. Baranov 2003
In the framework of the k_T-factorization QCD approach we consider the production of b quark pairs in pbar p collisions at the Fermilab Tevatron. We investigate the dependence of the b quark, B meson and decay muon differential cross sections on the different forms of unintegrated gluon distributions. The analysis also covers the azimuthal correlations between the b and bar b quarks and their decay muons. Our theoretical results agree well with recent data taken by the D0 and CDF collaborations at Tevatron. Finally, we present our predictions for muon-muon and muon-jet cross sections at the Tevatron and CERN LHC conditions.
154 - J. Bartels 2007
We discuss the inclusive production of jets in the central region of rapidity in the context of k_T-factorization at next-to-leading order (NLO). Calculations are performed in the Regge limit making use of the NLO BFKL results. We introduce a jet con e definition and carry out a proper phase--space separation into multi-Regge and quasi-multi-Regge kinematic regions. We discuss two situations: scattering of highly virtual photons, which requires a symmetric energy scale to separate impact factors from the gluon Greens function, and hadron-hadron collisions, where a non-symmetric scale choice is needed.
We compare the theoretical status and the numerical predictions of two approaches for heavy quark production in the high energy hadron collisions, namely the conventional LO parton model with collinear approximation and $k_T$-factorization approach. The main assumptions used in the calculations are discussed. To extract the differences coming from the matrix elements we use very simple gluon structure function and fixed coupling. It is shown that the $k_T$-factorization approach calculated formally in LO and with Sudakov form factor accounts for many contributions related usually to NLO (and even NNLO) processes of the conventional parton model
We investigate the prospects of the diffractive production of $J/psi$ mesons at large momentum transfer $|t|$ at the future Electron Ion Collider in electron-proton collisions. In particular, we focus on the measurements of the rapidity gap size. The model used for the calculations is based on the diffractive exchange of the Balitsky-Fadin-Kuraev-Lipatov perturbative Pomeron. Calculations for the cross section and the estimates for the rates assuming integrated luminosity of $10 , rm fb^{-1}$ are provided. Two experimental strategies were considered. First, measuring the rapidity gap size directly, by observing the activity in the forward part of the central detector, and second by putting a lower limit on the rapidity gap size in the case when the detector cannot measure forward activity. We find that, it is possible to measure at the EIC the dependence of the cross section on rapidity gap interval up to four units in rapidity. This should allow to measure the change of the cross section by a factor 1.6 expected due to the BFKL exchange. This is possible with the present setup of the detector which projects the coverage up to 3.5 units of rapidity. We conclude however, that the extension of the detector up to higher rapidity, for example to 4.5 would be desirable and provide even better lever arm for testing rapidity gap physics at the EIC.
The inclusive production of jets in the central region of rapidity is studied in $k_T$-factorization at next-to-leading order (NLO) in QCD perturbation theory. Calculations are performed in the Regge limit making use of the NLO BFKL results. A jet co ne definition is introduced and a proper phase--space separation into multi-Regge and quasi-multi-Regge kinematic regions is carried out. Two situations are discussed: scattering of highly virtual photons, which requires a symmetric energy scale to separate the impact factors from the gluon Greens function, and hadron-hadron collisions, where a non--symmetric scale choice is needed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا