ﻻ يوجد ملخص باللغة العربية
The concept of a very long baseline neutrino experiment with quasi monochromatic neutrino beam and very large area underground detector is discussed. The detector could be placed in the existing 20 km tunnel at IHEP, Protvino. The High Intensity Proton Accelerators (HIPA) which are planned to be built in Japan (JAERI-KEK, baseline of 7000 km) and Germany (GSI, baseline of 2000 km) as well as the Main Injector at Fermilab (7600 km) are considered as possible sources of neutrino beams. The oscillations are analysed in the three-neutrino scheme taking into account terrestrial matter effects. In the proposed experiment it is feasible to observe the oscillation pattern as an unique proof of the existence of neutrino oscillations. Precise measurements of disappearance oscillation parameters of the muon neutrinos and antineutrinos can be done within a reasonable time.
Current long-baseline neutrino-oscillation experiments such as NO$ u$A and T2K are mainly sensitive to physics in the neighbourhood of the first oscillation maximum of the $ u_mu to u_e$ oscillation probability. The future Deep Underground Neutrino
The proposed Long Baseline Neutrino Observatory (LBNO) initially consists of $sim 20$ kton liquid double phase TPC complemented by a magnetised iron calorimeter, to be installed at the Pyhasalmi mine, at a distance of 2300 km from CERN. The conventio
We analyze the prospects of a feasible, Brookhaven National Laboratory based, very long baseline (BVLB) neutrino oscillation experiment consisting of a conventional horn produced low energy wide band beam and a detector of 500 kT fiducial mass with m
Neutrino oscillations have been probed during the last few decades using multiple neutrino sources and experimental set-ups. In the recent years, very large volume neutrino telescopes have started contributing to the field. First ANTARES and then Ice
Reactor antineutrinos are used to study neutrino oscillation, search for signatures of non-standard neutrino interactions, and to monitor reactor operation for safeguard applications. The flux and energy spectrum of reactor antineutrinos can be predi