ترغب بنشر مسار تعليمي؟ اضغط هنا

Constraining Fourth Generation with $Bto X_s gamma$

73   0   0.0 ( 0 )
 نشر من قبل Levent Solmaz
 تاريخ النشر 2002
  مجال البحث
والبحث باللغة English
 تأليف L. Solmaz




اسأل ChatGPT حول البحث

Using the theoretical and experimental results on $B to X_s gamma$, a four-generation SM is analyzed to constrain the combination of the $4times 4$ Cabibbo-Kobayashi-Maskawa factor $V_{t^prime s}^* V_{t^prime b}$ as a function of the $t^prime$--quark mass. It is observed that the results for the above--mentioned physical quantities are essentially different from the previous predictions for certain solutions of the CKM factor. Influences of the new model is used to predict CP violation in $B to X_s gamma$ decay at the order of $A_{CP}=5%$, stemming from the appearance of complex phases of $V_{t^prime s}^* V_{t^prime b}$ and of Wilson coefficients $C_7$, $C_8$, in the related process. The above mentioned physical quantities can serve as efficient tools in search of the fourth generation.



قيم البحث

اقرأ أيضاً

54 - levent solmaz 2003
In a scenario in which fourth generation fermions exist, we study effects of new physics on the differential decay width, forward-backward asymmetry $A_{text{FB}}$ and integrated branching ratio for $Bto X_s ell^+ ell^-$ decay with $(ell=e,mu)$. Pred iction of the new physics on the mentioned quantities essentially differs from the Standard Model results, in certain regions of the parameter space, enhancement of new physics on the above mentioned physical quantities can yield values as large as two times of the SM predictions, whence present limits of experimental measurements of branching ratio is spanned, contraints of the new physics can be extracted. For the fourth generation CKM factor $V_{t^prime b}^ast V_{t^prime s}$ we use $pm 10^{-2}$ and $pm 10^{-3}$ ranges, take into consideration the possibility of a complex phase where it may bring sizable contributions, obtained no significant dependency on the imaginary part of the new CKM factor. For the above mentioned quantities with a new family, deviations from the SM are promising, can be used as a probe of new physics.
We examine the effects of R-parity violating (RPV) supersymmetry on the two-photon B decays B -> X_s gamma gamma and B_s -> gamma gamma. We find that, although there are many one-loop RPV diagrams that can contribute to these two-photon B decays, the RPV effect is dominated by a single diagram. This diagram, named here lambda-irreducible, has a distinct topology which is irrelevant for the b -> s gamma amplitude at one-loop and has thus a negligible effect on the one-photon decay B -> X_s gamma. We show that the lambda-irreducible RPV diagram can give BR(B_s -> gamma gamma) ~ 5*10^(-6) and BR(B -> X_s gamma gamma) ~ 6*10^(-7), which is about 16 and 5 times larger than the SM values, respectively. Although the enhancement to the decay width of B -> X_s gamma gamma is not that dramatic, we find that the energy distribution of the two photons is appreciably different from the SM, due to new threshold effects caused by the distinct topology of the RPV lambda-irreducible diagram. Moreover, this diagram significantly changes the forward-backward asymmetry with respect to the softer photon in B -> X_s gamma gamma. Thus, the RPV effect in B -> X_s gamma gamma can be discerned using these observables.
We study Higgs-radion mixing in a warped extra dimensional model with Standard Model fields in the bulk, and we include a fourth generation of chiral fermions. The main problem with the fourth generation is that, in the absence of Higgs-radion mixing , it produces a large enhancement in the Higgs production cross-section, now severely constrained by LHC data. We analyze the production and decay rates of the two physical states emerging from the mixing and confront them with present LHC data. We show that the current signals observed can be compatible with the presence of one, or both, of these Higgs-radion mixed states (the $phi$ and the $h$), although with a severely restricted parameter space. In particular, the radion interaction scale must be quite low, Lambda_phi ~ 1-1.3 TeV. If m_phi ~ 125 GeV, the $h$ state must be heavier (m_h>320 GeV). If m_h ~ 125 GeV, the $phi$ state must be quite light or close in mass (m_phi ~ 120 GeV). We also present the modified decay branching ratios of the mixed Higgs-radion states, including flavor violating decays into fourth generation quarks and leptons. The windows of allowed parameter space obtained are very sensitive to the increased precision of upcoming LHC data. During the present year, a clear picture of this scenario will emerge, either confirming or further severely constraining this scenario.
$B$ decays proceeding via $bto cell u$ transitions with $ell=e$ or $mu$ are tree-level processes in the Standard Model. They are used to measure the CKM element $V_{cb}$, as such forming an important ingredient in the determination of e.g. the unitar ity triangle; hence the question to which extent they can be affected by new physics contributions is important, specifically given the long-standing tension between $V_{cb}$ determinations from inclusive and exclusive decays and the significant hints for lepton flavour universality violation in $bto ctau u$ and $bto sellell$ decays. We perform a comprehensive model-independent analysis of new physics in $bto cell u$, considering all combinations of scalar, vector and tensor interactions occuring in single-mediator scenarios. We include for the first time differential distributions of $Bto D^*ell u$ angular observables for this purpose. We show that these are valuable in constraining non-standard interactions. Specifically, the zero-recoil endpoint of the $Bto Dell u$ spectrum is extremely sensitive to scalar currents, while the maximum-recoil endpoint of the $Bto D^*ell u$ spectrum with transversely polarized $D^*$ is extremely sensitive to tensor currents. We also quantify the room for $e$-$mu$ universality violation in $bto cell u$ transitions, predicted by some models suggested to solve the $bto ctau u$ anomalies, from a global fit to $Bto Dell u$ and $Bto D^*ell u$ for the first time. Specific new physics models, corresponding to all possible tree-level mediators, are also discussed. As a side effect, we present $V_{cb}$ determinations from exclusive $B$ decays, both with frequentist and Bayesian statistics, leading to compatible results. The entire numerical analysis is based on open source code, allowing it to be easily adapted once new data or new form factors become available.
We use sampling techniques to find robust constraints on the masses of a possible fourth sequential fermion generation from electroweak oblique variables. We find that in the case of a light (115 GeV) Higgs from a single electroweak symmetry breaking doublet, inverted mass hierarchies are possible for both quarks and leptons, but a mass splitting more than M(W) in the quark sector is unlikely. We also find constraints in the case of a heavy (600 GeV) Higgs in a single doublet model. As recent data from the Large Hadron Collider hints at the existence of a resonance at 124.5 GeV and a single Higgs doublet at that mass is inconsistent with a fourth fermion generation, we examine a type II two Higgs doublet model. In this model, there are ranges of parameter space where the Higgs sector can potentially counteract the effects of the fourth generation. Even so, we find that such scenarios produce qualitatively similar fermion mass distributions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا