ترغب بنشر مسار تعليمي؟ اضغط هنا

Alternative approach to $b->s gamma$ in the uMSSM

93   0   0.0 ( 0 )
 نشر من قبل Stefano Rigolin
 تاريخ النشر 2001
  مجال البحث
والبحث باللغة English
 تأليف L. Everett




اسأل ChatGPT حول البحث

The gluino contributions to the $C_{7,8}$ Wilson coefficients for $b->s gamma$ are calculated within the unconstrained MSSM. New stringent bounds on the $delta^{RL}_{23}$ and $delta^{RR}_{23}$ mass insertion parameters are obtained in the limit in which the SM and SUSY contributions to $C_{7,8}$ approximately cancel. Such a cancellation can plausibly appear within several classes of SUSY breaking models in which the trilinear couplings exhibit a factorized structure proportional to the Yukawa matrices. Assuming this cancellation takes place, we perform an analysis of the $b->s gamma$ decay. We show that in a supersymmetric world such an alternative is reasonable and it is possible to saturate the $b->s gamma$ branching ratio and produce a CP asymmetry of up to 20%, from only the gluino contribution to $C_{7,8}$ coefficients. Using photon polarization a LR asymmetry can be defined that in principle allows for the $C_{7,8}$ and $C_{7,8}$ contributions to the $b->s gamma$ decay to be disentangled. In this scenario no constraints on the ``sign of $mu$ can be derived.

قيم البحث

اقرأ أيضاً

In this work we compute the leading logarithmic corrections to the b -> s gamma decay in a dimensional scheme which does not require any definition of the gamma5 matrix. The scheme does not exhibit unconsistencies and it is therefore a viable alterna tive to the tHooft Veltman scheme, particularly in view of the next-to-leading computation. We confirm the recent results of Ciuchini et al.
Recently the radiative B decay to the strange axial-vector mesons, B --> K1(1270) gamma, has been observed with rather large branching ratio. This process is particularly interesting as the subsequent K1 decay into its three body final state allows u s to determine the polarization of the photon, which is mostly left- (right-)handed for Bbar (B) in the SM while various new physics models predict additional right- (left-)handed components. A new method is proposed to determine the polarization, exploiting the full Dalitz plot distribution, which seems to reduce significantly the statistical errors. This polarization measurement requires however a detailed knowledge of the K1--> K pi pi strong interaction decays, namely, the various partial wave amplitudes into the several possible quasi two-body channels, as well as their relative phases. The pattern of partial waves is especially complex for the K1(1270). We attempt to obtain the information through the combination of an experimental input and a theoretical one, provided by the 3P0 quark-pair-creation model.
A search for the rare decay of a $B^{0}$ or $B^{0}_{s}$ meson into the final state $J/psigamma$ is performed, using data collected by the LHCb experiment in $pp$ collisions at $sqrt{s}=7$ and $8$ TeV, corresponding to an integrated luminosity of 3 fb $^{-1}$. The observed number of signal candidates is consistent with a background-only hypothesis. Branching fraction values larger than $1.7times 10^{-6}$ for the $B^{0}to J/psigamma$ decay mode are excluded at 90% confidence level. For the $B^{0}_{s}to J/psigamma$ decay mode, branching fraction values larger than $7.4times 10^{-6}$ are excluded at 90% confidence level, this is the first branching fraction limit for this decay.
We investigate the implications of the latest LHCb measurement of $R_K$ for NP explanations of the $B$ anomalies. The previous data could be explained if the $b to s mu^+ mu^-$ NP is in (I) $C_{9,{rm NP}}^{mumu}$ or (II) $C_{9,{rm NP}}^{mumu} = -C_{1 0,{rm NP}}^{mumu}$, with scenario (I) providing a better explanation than scenario (II). This continues to hold with the new measurement of $R_K$. However, for both scenarios, this measurement leads to a slight tension of $O(1sigma)$ between separate fits to the $b to s mu^+ mu^-$ and $R_{K^{(*)}}$ data. In this paper, we investigate whether this tension can be alleviated with the addition of NP in $b to s e^+ e^-$. In particular, we examine the effect of adding such NP to scenarios (I) and (II). We find several scenarios in which this leads to improvements in the fits. $Z$ and LQ models with contributions to both $b to s mu^+ mu^-$ and $b to s e^+ e^-$ can reproduce the data, but only within scenarios based on (II). If the tension persists in future measurements, it may be necessary to consider NP models with more than one particle contributing to $b to s ell^+ ell^-$.
71 - P. Gosdzinsky , N. Kivel 1997
We have resummed all the (-b_0 alpha_s)^n contributions to the photon-meson transition form factor F_{gamma pi}. To do this, we have used the assumption of `naive nonabelianization (NNA). Within NNA, a series in (N_f alfa_s)^n is interpreted as a ser ies in (-b_0 alpha_S)^n by means of the restoration of the full first QCD beta-function coefficient -b_0 by hand. We have taken into account corrections to the leading order coefficient function and to the evolution of the distribution function. Due to conformal constraints, it is possible to find the eigenfunctions of the evolution kernel. It turns out that the nondiagonal corrections are small, and neglecting them we obtained a representation for the distribution function with multiplicatively renormalized moments. For a simple shape of the distribution function, which is close to the asymptotic shape, we find that the radiative correction decrease the LO by 30 % and the uncertainty in the resummation lies between 10 % and 2 % for Q^2 between 2 and 10 GeV^2.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا