ﻻ يوجد ملخص باللغة العربية
Recent developments in the field of radiative effects in polarized lepton-nuclear scattering are reviewed. The processes of inclusive, semi-inclusive, diffractive and elastic scattering are considered. The explicit formulae obtained within the covariant approach are discussed. FORTRAN codes POLRAD, RADGEN, HAPRAD, DIFFRAD and MASCARAD created on the basis of the formulae are briefly described. Applications for data analysis of the current experiments on lepton-nuclear scattering at CERN, DESY, SLAC and TJNAF are illustrated by numerical results.
The contribution of the radiative tail from the quasielastic peak to low order radiative correction to deep inelastic scattering of polarized leptons by polarized $^3$He was calculated within the sum rules formalism and $y$-scaling hypothesis. Numeri
The cross sections and polarization components of the $tau$ leptons produced in the charged current induced quasielastic $ u_tau~(bar u_tau) - N$ scattering have been studied. The theoretical uncertainties arising due to the use of different vector f
We investigate the indirect effects of heavy vector bileptons being exchanged in polarized Moller scattering, at the next generation of linear colliders. Considering both longitudinal and transverse beam polarization, and accounting for initial-state
Single-spin asymmetries for pions and charged kaons are measured in semi-inclusive deep-inelastic scattering of positrons and electrons off a transversely nuclear-polarized hydrogen target. The dependence of the cross section on the azimuthal angles
We summarize the present phenomenology of Sivers and Collins effects for transverse single spin asymmetries in polarized proton-proton collisions within the framework of the generalized parton model (GPM). We will discuss a reassessment of the Collin