ترغب بنشر مسار تعليمي؟ اضغط هنا

Neutrino clustering and the Z-burst model

36   0   0.0 ( 0 )
 نشر من قبل Matthew Garbutt
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The possibility that the observed Ultra High Energy Cosmic Rays are generated by high energy neutrinos creating Z-bursts in resonant interactions with the background neutrinos has been proposed, but there are difficulties in generating enough events with reasonable incident neutrino fluxes. We point out that this difficulty is overcome if the background neutrinos have coalesced into neutrino clouds --- a possibility previously suggested by some of us in another context. The limitations that this mechanism for the generation of UHECRs places on the high energy neutrino flux, on the masses of the background neutrinos and the characteristics of the neutrino clouds are spelled out.

قيم البحث

اقرأ أيضاً

The Deep Underground Neutrino Experiment (DUNE), a 40-kton underground liquid argon time projection chamber experiment, will be sensitive to the electron-neutrino flavor component of the burst of neutrinos expected from the next Galactic core-collaps e supernova. Such an observation will bring unique insight into the astrophysics of core collapse as well as into the properties of neutrinos. The general capabilities of DUNE for neutrino detection in the relevant few- to few-tens-of-MeV neutrino energy range will be described. As an example, DUNEs ability to constrain the $ u_e$ spectral parameters of the neutrino burst will be considered.
We perform a complete calculation at the one-loop level for the Zggg and Zggg couplings in the context of the minimal 331 model, which predicts the existence of a new Z gauge boson and new exotic quarks. Bose symmetry is exploited to write a compact and manifest SU_C(3)-invariant vertex function for the Vggg (V=Z,Z) coupling. Previous results on the $Zto ggg$ decay in the standard model are reproduced. It is found that this decay is insensitive to the effects of the new exotic quarks. This in contrast with the $Zto ggg$ decay, which is sensitive to both the standard model and exotic quarks, whose branching ratio is larger than that of the $Zto ggg$ transition by about a factor of 4.
We address the possible impact of New Physics on neutrino oscillation experiments. This can modify the neutrino production, propagation and/or detection, making the full cross section non-factorizable in general. Thus, for example, the neutrino flux may not be properly described assuming an unitary MNS matrix and/or neutrinos may propagate differently depending of their Dirac or Majorana character. Interestingly enough, present limits on New Physics still allow for observable effects at future neutrino experiments.
65 - A. Gusso , C. A. de S. Pires , 2003
In the minimal 3-3-1 model charged leptons come in a non-diagonal basis. Moreover the Yukawa interactions of the model lead to a non-hermitian charged lepton mass matrix. In other words, the minimal 3-3-1 model presents a very complex lepton mixing. In view of this we check rigorously if the possible textures of the lepton mass matrices allowed by the minimal 3-3-1 model can lead or not to the neutrino mixing required by the recent experiments in neutrino oscillation.
Adopting the 3+1 neutrino mixing parameters by the IceCube and shortbase line experiments, we investigate the sterile-active neutrino oscillation effects on the supernova neutrino process. For the sterile neutrino ($ u_s$), we study two different lum inosity models. First, we presume that the $ u_s$ does not interact with other particles through the standard interactions apart from the oscillation with the active neutrinos. Second, we consider that $ u_s$ can be directly produced by $ u_e$ scattering with matter. In both cases, we find that the pattern of neutrino oscillations can be changed drastically by the $ u_s$ in supernova environments. Especially multiple resonances occur, and consequently affect thermal neutrino-induced reaction rates. As a result, $^7$Li, $^7$Be, $^{11}$B, $^{11}$C, $^{92}$Nb, $^{98}$Tc and $^{138}$La yields in the $ u$-process are changed. Among those nuclei, $^7$Li and $^{11}$B yields can be constrained by the analysis of observed SiC X grains. Based on the meteoritic data, we conclude that the second model can be allowed while first model is excluded. The viability of the second model depends on the sterile neutrino temperature and the neutrino mass hierarchy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا