ترغب بنشر مسار تعليمي؟ اضغط هنا

Chiral multiplets versus parity doublets in highly excited baryons

68   0   0.0 ( 0 )
 نشر من قبل Leonid Glozman
 تاريخ النشر 2001
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

It has recently been suggested that the parity doublet structure seen in the spectrum of highly excited baryons may be due to effective chiral restoration for these states. We argue how the idea of chiral symmetry restoration high in the spectrum is consistent with the concept of quark-hadron duality. If chiral symmetry is effectively restored for highly-lying states, then the baryons should fall into representations of $SU(2)_Ltimes SU(2)_R$ that are compatible with the given parity of the states - the parity-chiral multiplets. We classify all possible parity-chiral multiplets: (i) $(1/2,0)oplus(0, 1/2)$ that contain parity doublet for nucleon spectrum;(ii) $(3/2,0) oplus (0, 3/2)$ consists of the parity doublet for delta spectrum; (iii) $(1/2,1) oplus (1, 1/2)$ contains one parity doublet in the nucleon spectrum and one parity doublet in the delta spectrum of the same spin that are degenerate in mass. Here we show that the available spectroscopic data for nonstrange baryons in the $sim$ 2 GeV range is consistent with all possibilities, but the approximate degeneracy of parity doublets in nucleon and delta spectra support the latter possibility with excited baryons approximately falling into $(1/2,1) oplus (1, 1/2)$ representation of $SU(2)_LtimesSU(2)_R$ with approximate degeneracy between positive and negative parity $N$ and $Delta$ resonances of the same spin.

قيم البحث

اقرأ أيضاً

60 - Keh-Fei Liu 2016
The relevance of chiral symmetry in baryons is highlighted in three examples in the nucleon spectroscopy and structure. The first one is the importance of chiral dynamics in understanding the Roper resonance. The second one is the role of chiral symm etry in the lattice calculation of $pi N sigma$ term and strangeness. The third one is the role of chiral $U(1)$ anomaly in the anomalous Ward identity in evaluating the quark spin and the quark orbital angular momentum. Finally, the chiral effective theory for baryons is discussed.
Finite-volume effects for the nucleon chiral partners are studied within the framework of the parity-doublet model. Our model includes the vacuum energy shift for nucleons, which is the Casimir effect. We find that for the antiperiodic boundary the f inite-volume effect leads to chiral symmetry restoration, and the masses of the nucleon parity doublets degenerate. For the periodic boundary, the chiral symmetry breaking is enhanced, and the masses of the nucleons also increase. We also discuss the finite-temperature effect and the dependence on the number of compactified spatial dimensions.
116 - M. Catillo , L. Ya. Glozman 2018
The chirally symmetric baryon parity-doublet model can be used as an effective description of the baryon-like objects in the chirally symmetric phase of QCD. Recently it has been found that above the critical temperature higher chiralspin symmetries emerge in QCD. It is demonstrated here that the baryon parity-doublet Lagrangian is manifestly chiralspin-invariant. We construct nucleon interpolators with fixed chiralspin transformation properties that can be used in lattice studies at high T.
We study the temperature and baryon density dependence of the masses of the lightest charmed baryons $Lambda_c$, $Sigma_c$ and $Sigma^*_c$. We also look at the effects of the temperature and baryon density on the binding energies of the $Lambda_c N$ and $Lambda_c Lambda_c$ systems. Baryon masses and baryon-baryon interactions are evaluated within a chiral constituent quark model. Medium effects are incorporated in those parameters of the model related to the dynamical breaking of chiral symmetry, which are the masses of the constituent quarks, the $sigma$ and $pi$ meson masses, and quark-meson couplings. We find that while the in-medium $Lambda_c$ mass decreases monotonically with temperature, those of $Sigma_c$ and $Sigma^*_c$ have a nonmonotonic dependence. These features can be understood in terms of a simple group theory analysis regarding the one-gluon exchange interaction in those hadrons. The in-medium $Lambda_c N$ and $Lambda_c Lambda_c$ interactions are governed by a delicate balance involving a stronger attraction due to the decrease of the $sigma$ meson mass, suppression of coupled-channel effects and lower thresholds, leading to shallow bound states with binding energies of a few~MeV. The $Lambda_c$ baryon could possibly be bound to a large nucleus, in qualitative agreement with results based on relativistic mean field models or QCD sum rules. Ongoing experiments at RHIC or LHCb or the planned ones at FAIR and J-PARC may take advantage of the present results.
A distinctive feature of the presence of spontaneous chiral symmetry breaking in QCD is the condensation of low modes of the Dirac operator near the origin. The rate of condensation must be equal to the slope of (Mpi^2 Fpi^2)/2 with respect to the qu ark mass m in the chiral limit, where Mpi and Fpi are the mass and the decay constant of the Nambu-Goldstone bosons. We compute the spectral density of the (Hermitian) Dirac operator, the quark mass, the pseudoscalar meson mass and decay constant by numerical simulations of lattice QCD with two light degenerate Wilson quarks. We use CLS lattices at three values of the lattice spacing in the range 0.05-0.08 fm, and for several quark masses corresponding to pseudoscalar mesons masses down to 190 MeV. Thanks to this coverage of parameters space, we can extrapolate all quantities to the chiral and continuum limits with confidence. The results show that the low quark modes do condense in the continuum as expected by the Banks-Casher mechanism, and the rate of condensation agrees with the Gell-Mann-Oakes-Renner (GMOR) relation. For the renormalisation-group-invariant ratios we obtain [Sigma^RGI]^(1/3)/F =2.77(2)(4) and Lambda^MSbar/F = 3.6(2), which correspond to [Sigma^MSbar(2 GeV)]^(1/3) =263(3)(4) MeV and F=85.8(7)(20) MeV if FK is used to set the scale by supplementing the theory with a quenched strange quark.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا