ترغب بنشر مسار تعليمي؟ اضغط هنا

Measuring Supersymmetric Particle Masses at the LHC in Scenarios with Baryon-Number R-Parity Violating Couplings

143   0   0.0 ( 0 )
 نشر من قبل Peter Richardson
 تاريخ النشر 2001
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The measurement of sparticle masses in the Minimal Supersymmetric Standard Model at the LHC is analysed, in the scenario where the lightest neutralino decays into three quarks. Such decays, occurring through the baryon-number violating coupling lambda_ijk, pose a severe challenge to the capability of the LHC detectors since the final state has no missing energy signature and a high jet multiplicity. We focus on the case of non-zero lambda_212 which is the most difficult experimentally. The proposed method is valid over a wide range of SUGRA parameter space with lambda_212 between 10^{-5}-0.1. Simulations are performed of the ATLAS detector at the Large Hadron Collider. Using the lightest neutralino from the decay chain left-squark to quark + next-to-lightest neutralino to right-slepton + lepton + quark and finally to lightest neutralino + lepton pair + quark, we show that the lightest and next-to-lightest neutralino masses can be measured by 3-jet and 3-jet + lepton pair invariant mass combinations. At the SUGRA point M_0=100 GeV, M_{1/2}=300 GeV, A_0=300 GeV, tan beta=10, sign of mu positive and with lambda_212=0.005, we achieve statistical (systematic) errors of 3 (3), 3 (3), 0.3 (4) and 5 (12) GeV respectively for the masses of the lightest neutralino, next-to-lightest neutralino, right-slepton and left-squark, with an integrated luminosity of 30 fb^{-1}.



قيم البحث

اقرأ أيضاً

We revisit the issue of probing R-violating couplings of supersymmetric theories at hadronic colliders, particularly at the LHC. Concentrating on dimuon production, an evaluation of the optimal sensitivity to the R-violating coupling is performed thr ough a maximum likelihood analysis. The measurement uncertainties are evaluated through a study of fully generated events processed through a fast simulation of the ATLAS detector. It is found that a host of R-violating couplings can be measured to a statistical accuracy of better than 10%, over a significant part of the m_{tilde f} -- lambda parameter space still allowed by low energy measurements. Since the bounds thus obtained do not simply scale as the squark mass, one can do significantly better at the LHC than at the Tevatron. The same analysis can also be extended to assess the reach of the LHC to effects due to any non-SM structure of the four-fermion amplitude, caused by exchanges of new particles with different spins such as leptoquarks and gravitons that are suggested by various theoretical ideas.
We consider the case where supersymmetry with broken R-parity is embedded in the minimal supergravity model (mSUGRA). This alters the standard mSUGRA spectrum and opens a wide range in parameter space, where the scalar tau is the lightest supersymmet ric particle, instead of the lightest neutralino. We study the resulting LHC phenomenology. Promising signatures would be detached vertices from long-lived staus, multi lepton final states and multi-tau final states. We investigate in detail the corresponding cross sections and decay rates in characteristic benchmark scenarios.
We study the collider phenomenology of bilinear R-parity violating supergravity, the simplest effective model for supersymmetric neutrino masses accounting for the current neutrino oscillation data. At the CERN Large Hadron Collider the center-of-mas s energy will be high enough to probe directly these models through the search for the superpartners of the Standard Model (SM) particles. We analyze the impact of R-parity violation on the canonical supersymmetry searches - that is, we examine how the decay of the lightest supersymmetric particle (LSP) via bilinear R-parity violating interactions degrades the average expected missing momentum of the reactions and show how this diminishes the reach in the usual channels for supersymmetry searches. However, the R-parity violating interactions lead to an enhancement of the final states containing isolated same-sign di-leptons and trileptons, compensating the reach loss in the fully inclusive channel. We show how the searches for displaced vertices associated to LSP decay substantially increase the coverage in supergravity parameter space, giving the corresponding reaches for two reference luminosities of 10 and 100 fb$^{-1}$ and compare with those of the R-parity conserving minimal supergravity model.
Recently there has been much interest in the use of single-jet mass and jet substructure to identify boosted particles decaying hadronically at the LHC. We develop these ideas to address the challenging case of a neutralino decaying to three quarks i n models with baryonic violation of R-parity. These decays have previously been found to be swamped by QCD backgrounds. We demonstrate for the first time that such a decay might be observed directly at the LHC with high significance, by exploiting characteristics of the scales at which its composite jet breaks up into subjets.
We present a comprehensive update of the bounds on R-Parity violating supersymmetric couplings from lepton-flavour- and lepton-number-violating decay processes. We consider tau and mu decays as well as leptonic and semi-leptonic decays of mesons. We present several new bounds resulting from tau, eta and Kaon decays and correct some results in the literature concerning B-meson decays.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا